Dioxygen Activation by Synthetic Models of Nonheme Iron Enzymes

Tapan Kanti Paine, Lawrence Que, Jr.

Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455 (e-mail: paine@chem.umn.edu)

Nonheme iron enzymes activate O_2 to carry out a number of metabolically important transformations. The oxygen activation mechanisms proposed for nonheme iron systems generally follow the heme paradigm in invoking the involvement of iron-peroxo and iron-oxo species in their catalytic cycles. However, the nonheme ligand environments allow for end-on and side-on O_2 coordination and show greater flexibility in the modes of O_2 activation. Thus, the investigation on synthetic functional model complexes that can activate O_2 is important to understand the nature of the reactive oxygen intermediates.

In the course of investigating the O_2 activation by synthetic model complexes, we report here two different iron(II) complexes of the tetradentate 6-Me$_3$TPA ligand (L). The mononuclear iron(II) complex of mandelate reacts with O_2 and undergoes oxidative decarboxylation but the dinuclear complex of phenylpyruvate reacts with O_2 to undergo oxidative C2-C3 bond cleavage of phenylpyruvate (Scheme). This difference in reactivity reflects the different O_2 activation pathways by the two complexes. Spectroscopic and structural characterization of the complexes, involvement of possible intermediates and in-depth reactivity studies will be discussed.

\[
\begin{align*}
\text{LFe}^{\text{II}}\text{Fe}^{\text{II}}\text{L} + \cdot_2 & \rightarrow \text{LFe}^{\text{II}}\text{Fe}^{\text{II}}\text{L} + \text{CO}_2 + \text{H}_2\cdot \\
\text{Ph} & \text{O} \quad \text{O} \quad \text{LFe}^{\text{II}}\text{Fe}^{\text{II}}\text{L} + \cdot_2 \rightarrow \text{PhCH}\cdot
\end{align*}
\]

Supported by NIH GM-33162.