A Cambialistic Pair of Fe- and Mn-Dependent Dioxygenases

Joseph P. Emerson, Kevin D. Koehntop, Lawrence Que, Jr., and John D. Lipscomb

Departments of Chemistry, Biochemistry, Molecular Biology, and Biophysics and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, MN (emerson@chem.umn.edu)

Two homologous enzymes from Arthrobacter globiformis and Brevibacterium fuscum that utilize mononuclear active sites coordinated to the 2-His-1-carboxylate facial triad have been found to catalyze the extradiol cleavage of homoprotocatechuic acid (HPC), the key ring-cleaving step in the degradation of tyrosine. These two HPC 2,3-dioxygenases (HPCD) have nearly identical tertiary structures (left image) and active site coordination geometries when HPC is bound to the metal center (right image). [B. f. HPCD (1Q0C.pdb) = blue line and 5-coordinate maroon line structures; A. g. HPCD (1F1V.pdb) = green ribbon and 6-coordinate ball and stick structures] However, these enzymes utilize different transition metals for catalysis: B. f. HPCD uses Fe, while Mn is required in A. g. HPCD. Employing recombinant expression in E. coli, we have over-expressed and isolated these two enzymes with the alternative, non-native transition metal in their active sites, i.e. an Fe-dependent A. g. HPCD and a Mn-dependent B. f. HPCD. In this work we report a series of experiments characterizing the reactivity and spectroscopic properties of these enzymes. Together, these data firmly establish a new class of cambialistic [from the Latin cambialis, suggesting the capability of making a cofactor change] enzymes with the ability to effectively use either Fe or Mn for catalysis.

Supported by NIH grants GM 33162 and GM 072287