Redox State Dependent Axial Ligand Dynamics of Cytochrome c_{552} from *Nitrosomonas europaea*

Ravinder Kaur and Kara Bren

Department of Chemistry, University of Rochester

Nitrosomonas europaea cytochrome c_{552} (*Ne* cyt c_{552}) is a member of the cytochrome c_8 family, of which *Pseudomonas aeruginosa* cytochrome c_{551} (*Pa* cyt c_{551}) is a prototypical member. *Ne* cyt c_{552} and *Pa* cyt c_{551} have high homology in sequence and structure, but their heme substituent ^1H NMR hyperfine shifts differ substantially. Whereas *Pa* cyt c_{551} has the $5\text{-CH}_3 > 1\text{-CH}_3 > 8\text{-CH}_3 > 3\text{-CH}_3$ heme methyl shift pattern with a large spread (~20 ppm) typical of the cyt c_8 family, *Ne* cyt c_{552} has a $5\text{-CH}_3 > 8\text{-CH}_3 > 3\text{-CH}_3 > 1\text{-CH}_3$ pattern with a small (~10 ppm) spread. We have proposed that the unusual heme methyl shift pattern of *Ne* cyt c_{552} results from fluxional behavior of the axial Met (1).

The observation of temperature-dependent, T_1-independent line broadening of the heme methyl resonances of *Ne* cyt c_{552} supports the proposal that the axial Met is in conformational exchange in oxidized *Ne* cyt c_{552} (1). Interestingly, in the reduced form of *Ne* cyt c_{552}, only one configuration of the axial Met is indicated by the NOEs from the Met side chain to the heme substituents (2). The orientation and anisotropy of the χ tensor for oxidized *Ne* cyt c_{552}, calculated from pseudocontact shifts, are compared to *Pa* cyt c_{551}. The χ_{xx} axis for *Ne* cyt c_{552} is oriented at 43° relative to the iron-pyrrole II axis, which is significantly different from the value for *Pa* cyt c_{551} (20°), but near the value expected if the axial Met is in fast exchange between conformations similar to that seen in *Pa* cyt c_{551} and in the mitochondrial cyts c ($\chi_{xx} \sim 72^\circ$). The magnetic axes calculation also shows that the electronic structure of *Ne* cyt c_{552} is highly axial, supporting the proposal of a fluxional Met in this protein and in agreement with the HALS-type (“large g_{max}”) EPR spectrum reported for *Ne* cyt c_{552} (3). In addition, comparison of the measured and calculated pseudocontact shifts supports the proposal of a redox state-dependent conformational change that may influence axial Met fluxion.