Structural Studies of Ni Trafficking Proteins: NikA, NikR and HypA

David C. Kennedy,¹ Jeffrey S. Iwig,³ Faizah Al-Mjeni,² Peter T. Chivers³ and Michael J. Maroney.

¹Departments of Chemistry, University of Massachusetts and²Sultan Qaboos University, and³Department of Biochemistry and Molecular Biophysics, Washington University

NikA is a periplasmic binding protein associated with the Ni-specific transporter, NikABCDE in E. coli. Early investigations of the Ni site structure by XAS showed (N/O)₆₋₇S coordination.¹ Recent refinements are consistent with the involvement of 2 - 3 His residues. The data are consistent with a Ni(N/O)₄(His)₂ site. This contrasts with a recent crystal structure, that shows Ni bound with five aqua ligands at an average Ni-O distance of 2.7 Å.²

HypA is an accessory nickel protein that assists in the incorporation of nickel in hydrogenase in E. coli and both urease and hydrogenase in Helicobacter pylori.³ HypA contains two metal centers, one nickel and one zinc. Both sites have been investigated in H. pylori HypA by XAS. XANES analysis shows that the Ni site is 6-coordinate with a (N/O)₆ ligand donor atom set, of which ca. two ligands are provided by His residues. In the absence of Ni, the Zn site is 4-coordinate with 3 S-donors and one N/O-donor. Interestingly, upon coordination of Ni, the Zn site changes to a site containing S₄ coordination. This change in coordination likely plays an important role in the function of HypA within the cell and will be discussed.

NikR functions as a transcriptional regulator. The tetrameric protein contains four high-affinity metal binding sites that are 4-coordinate with a (N/O)₃S-ligand donor set in its free state, switching to 6-coordinate, with (N/O)₆-donors, upon binding to operator DNA.⁴ Binding additional M²⁺ ions in two lower-affinity sites/tetramer in the presence of DNA reverts the coordination chemistry of the Ni to its (N/O)₃S ligation state. Thus, changes in salt concentration may effect the coordination chemistry of the high-affinity nickel site, and can be examined using XAS. The structural response of the high-affinity site to DNA and M²⁺ ions likely plays a role in the strength (or degree) of the transcriptional response exhibited by NikR in vivo.
