The structural relationship between substrate taurine and the non-heme Fe(II) center of taurine dioxygenase (TauD), an α-ketoglutarate-dependent iron dioxygenase, was measured using Electron Spin Echo Envelope Modulation (ESEEM) spectroscopy. Studies were done on TauD samples treated with NO, co-substrate α-ketoglutarate, and either protonated or specifically deuterated taurine. Stimulated echo ESEEM data were divided to eliminate interference from 1H and 14N modulations and to accentuate modulations from 2H. For taurine that was deuterated at the C-1 position (adjacent to the sulfonate group), 2H ESEEM spectra show features that arise from dipole-dipole and deuterium nuclear quadrupole interactions from a single deuteron. Parallel measurements done for taurine deuterated at both C-1 and C-2 show an additional ESEEM feature at the deuterium Larmor frequency. Analysis of these data at field positions ranging from $g = 4$ to $g = 2$ have allowed us to define the orientation of substrate taurine with respect to the magnetic axes of the Fe(II)-NO, $S = 3/2$, paramagnetic center. These results will be discussed in terms of previous X-ray crystallographic studies and the proposed mechanism for this family of enzymes.