Kinetics and DFT Studies on the Reaction of Copper(II) Complexes Supported by \(N,N\)-Bis(2-quinolylmethyl)amine Tridentate Ligands toward \(H_2O_2\)

Takao Osako,a Shigenori Nagatomo,b Teizo Kitagawa,c Christopher J. Cramerb and Shinobu Itoha

aN, Department of Chemistry, Graduate School of Science, Osaka City University
bDepartment of Chemistry and Supercomputer Institute, University of Minnesota
cOkazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences

Kinetics and DFT studies on the reaction of copper(II) complexes supported by bulky tridentate ligands \(L_1^R\) \((N,N\)-bis(2-quinolylmethyl)amine tridentate ligands) toward \(H_2O_2\) have been investigated in detail.

The copper(II) complexes exhibit a square pyramidal structure containing a coordinated solvent molecule at an equatorial position and a weakly coordinated counter anion (or water) at an axial position. They reacted readily with \(H_2O_2\) at a low temperature to give mononuclear hydroperoxo copper(II) complexes. Stopped-flow kinetics and DFT studies have suggested that, in the initial stage of the reaction, deprotonated hydrogen peroxide attacks the cupric ion, presumably from the axial position, to give a hydroperoxo copper(II) complex retaining the coordinated solvent molecule \((H^R\cdot S)\). \(H^R\cdot S\) then loses the solvent to give a tetragonal copper(II)-hydroperoxo complex \((H^R)\), in which the \(-OOH\) group may occupy an equatorial position (Scheme 1). The copper(II)-hydroperoxo complex \(H^R\) exhibits a relatively high O–O bond stretching vibration at 900 cm\(^{-1}\) compared to other previously reported examples.

\[\text{Scheme 1.} \]

\[\begin{align*}
\text{Sol} & \quad \text{ClO}_4^- & \quad \text{O} & \quad \text{OH} & \quad \text{Sol} \\
\text{Cul}^+ & \quad \text{N} & \quad \text{N} & \quad \text{N} & \quad \text{ClO}_4^- \\
\text{H}^R & \quad \text{R} & \quad \text{S} & \quad \text{Cul}^+ \\
\end{align*} \]