Advanced Paramagnetic Resonance Studies of the Fe-only Hydrogenase I from *Clostridium pasteurianum (CpI)*

Joshua Telser1,2, Paul M. C. Benton3, John W. Peters3, and Brian M. Hoffman2

1Chemistry Program, Roosevelt University, Chicago, IL 60605 USA, 2Department of Chemistry, Northwestern University, Evanston, IL 60208 USA, and 3Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 USA

Hydrogenases (H$\text{}_2$ase) comprise a class of metalloenzymes that catalyze perhaps the most fundamental of chemical reactions: $\text{H}_2(g) \leftrightarrow 2\text{H}^+(aq) + 2e^-$. The best known hydrogenases contain a Ni ion at their multi-metal cluster active site, however, other hydrogenases contain only Fe at the active site (1). Examples of both Ni and Fe-only H$\text{}_2$ases have been structurally characterized by x-ray crystallography. The Fe-only active site, “H-cluster”, is notable that it consists of a [Fe$_4$S$_4$] cluster covalently linked to a di-Fe center, in which each Fe is coordinated by a cyano and a carbonyl ligand, with a bridging CO. The current proposal for the oxidation state of these two Fe ions that in the EPR-inactive, air (“super”)oxidized form, H$_\text{ox}^{\text{air}}$, the H-cluster contains two Fe(II) ions (each LS 3d6, $S = 0$); in the EPR-active oxidized form, H$_\text{ox}$, one Fe becomes Fe(I) (LS 3d7, $S = 1/2$), and in the reduced form, H$_\text{red}$, the H-cluster consists of anti-ferromagnetically coupled Fe(I) ions, giving an $S_{\text{total}} = 0$ spin ground state.

We describe here 35 GHz continuous wave (CW) and pulsed electron paramagnetic resonance (EPR) and electron nuclear double resonance (ENDOR) studies on the H$_\text{ox}$ state of the Fe-only H$\text{}_2$ase I from *Clostridium pasteurianum (CpI)*, for which there is an x-ray structure of the H$_\text{ox}$ state (1). The H$_\text{ox}$ enzyme has been studied in several forms: in the naturally found form with natural isotopic abundances and with an extrinsic, bound CO molecule (CO-terminal form, with both 12CO and 13CO) and in a form in which extrinsic (terminal) 13CO exchanges with the endogenous, bridging CO to give an isotopolog that contains bridging 13CO.

The CO-terminal and CO-bridging (natural H$_\text{ox}$) states exhibit different EPR spectra and more importantly, very different 13C ENDOR spectra for the bridging versus terminal 13CO ligands: the former exhibits very weak hyperfine coupling; the latter very strong. These results will be discussed in terms of structural and computational studies of model compounds.