Site-specific chemistry in the $[\text{Fe}_4\text{S}_4]$ cluster of FTR revealed by Mössbauer spectroscopy

Ricardo García-Serres2, Elizabeth M. Walters1, Guy N. L. Jameson2, Dominique A. Glauser3, Florence Bourquin3, Wanda Manieri3, Peter Schürmann3, Michael K. Johnson1, and Boi Hanh Huynh2.

1Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, 2Department of Physics, Emory University, and 3Laboratoire de Biochimie Végétale, Université de Neuchâtel.

Light regulation in oxygenic photosynthesis is mediated by ferredoxin:thioredoxin reductase (FTR), a novel class of disulfide reductase with an active-site comprising a $[\text{Fe}_4\text{S}_4]^{2+}$ cluster and an adjacent disulfide, that catalyzes reduction of the thioredoxin disulfide in two sequential one-electron steps using a $[\text{Fe}_2\text{S}_2]^{2+/+}$ ferredoxin as the electron donor. To study the chemical reaction involved in the FTR catalytic process, we have characterized the active site of FTR in a variety of different forms: wild-type, variants involving point mutations of the active-site disulfide cysteines, and chemically modified forms in which a sulfur of the active site disulfide is alkylated with N-ethylmaleimide or covalently attached to a cysteine of thioredoxin m.

Mössbauer spectroscopy provides compelling evidence that the enzyme in its native state, as well as in the one and two-electron reduced states, possesses a $[\text{Fe}_4\text{S}_4]$ cluster with a unique, electron-rich iron site. Our studies suggest that this iron is in interaction with the active site disulfide and participates directly in the catalysis. The figure on the right shows a proposed catalytic mechanism consistent with these findings.