Studies of Low-Coordinate Iron Models of Nitrogenase

Patrick L. Holland¹, Wilda Vargas¹, Javier Vela¹, Nick Lees², Christine J. Flaschenriem¹, and Brian M. Hoffman²

¹Department of Chemistry, University of Rochester, and ²Department of Chemistry, Northwestern University

Molybdenum-dependent nitrogenase enzymes bind and reduce N₂ at the iron-molybdenum cofactor (FeMoco), which is illustrated below (X is probably N³⁻). The mechanism is unknown, but kinetic and spectroscopic studies of mutants indicate that the central iron “waist” atoms are the most likely sites for binding of N₂ and other substrates. The most detailed characterization of substrate adducts in the mutants has come from electron-nuclear double resonance (ENDOR) spectroscopy, which specifically detects nuclei coupled to the FeMoco [1].

In an effort to create small synthetic compounds with some of the coordination characteristics of the iron “waist” sites on the FeMoco, we synthesized the sulfide-bridged diiron complex 1 [2]. This complex has two trigonal-planar Fe²⁺ ions bridged by a biomimetic µ-sulfido ligand. Compound 1 binds a number of nitrogenase substrates and substrate analogues. Some hydrazines are reduced by the iron(II) ions to ammonia with cleavage of the N-N bond. One mixed-valence iron(II)-iron(III) product (2) has a bridging hydrazido ligand, and the $S = \frac{1}{2}$ ground state is amenable to characterization by ENDOR spectroscopy. ENDOR studies of the 15N and 2H labeled isotopomers of 2 have been performed and compared with the corresponding ENDOR spectra of a trapped hydrazine reduction intermediate of nitrogenase [3].