Towards Understanding the O_2 Chemistry of Mononuclear Non-Heme Iron Enzymes: Intra- and Extradiol Dioxygenases

Monita Y. M. Pau, Mindy I. Davis, Allen M. Orville, Stephanie L. Groce, John D. Lipscomb, and Edward I. Solomon

Department of Chemistry, Stanford University, and Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota

Both intra- and extradiol dioxygenases are found in a number of soil bacteria and participate in the degradation of catecholic rings. However, there is a striking difference in the position of ring cleavage and reaction mechanism. Intradiol dioxygenases employ a Fe$^{3+}$ center which has been proposed to activate substrate for direct attack by O_2. In contrast, extradiol dioxygenases use a Fe$^{2+}$ center and substrate binding has been proposed to activate the Fe$^{2+}$ site for O_2 binding and reaction.

To identify the factors governing the different chemical behaviour towards O_2, we have studied the active site geometric and electronic structures of these two classes of enzymes with a combination of spectroscopic methods, and complemented these spectral studies with DFT calculations. Substrate activation by the Fe$^{3+}$ center in intradiol dioxygenases is investigated through spectroscopic and computational studies on the enzyme-substrate complex. The interaction of O_2 with the Fe$^{2+}$ site upon substrate binding in extradiol dioxygenases is probed by binding a small molecule O_2 analog, NO, to the enzyme-substrate complex.

\[
\begin{align*}
\text{Intradiol (ortho), Fe}^{3+} & \quad \text{Extradiol (meta), Fe}^{2+} \\
3,4-\text{PCD; } R=\text{COOH} & \quad 2,3-\text{CTD; } R=\text{H}
\end{align*}
\]

Acknowledgement: This research has been supported by NIH Grant GM-40392.