A Comparison of Carboxylate and Phosphinate Bridge Effects on Nonheme Diiron(II)/O₂ Reactivity

Jonathan R. Frisch and Lawrence Que, Jr.
Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota,
Minneapolis, MN
frisch@chem.umn.edu

Nonheme diiron enzymes activate oxygen for use in reactions with a variety of substrates. An overview of the ligands in these systems reveals that minor differences may alter the method used for and the efficiency of O₂ activation. A diphenylphosphinate bridged complex of the dinucleating ligand N-Et HPTB (N,N,N’,N’-tetrakis (1-ethyl-2-benzimidazolylmethyl)-2-hydroxy-1,3-diaminopropane) has been synthesized, characterized and reacted with O₂ in various solvents in an attempt to gain a better understanding of the role of the phosphinate bridge in modulating the oxygenation of the diiron complex and the subsequent decay. Earlier research indicated that a CH₂Cl₂ solution of the benzoate bridged complex irreversibly binds O₂ and decays following first-order kinetics.¹ It has also been shown that in CH₃CN the decay is accelerated by the presence of electron-donating groups on the benzoate bridge.² Our current research shows no difference between the first-order decay kinetics of oxygenated DMF solutions of the benzoate and phosphinate bridged complexes. However, when exposed to O₂, a CH₂Cl₂ solution of the phosphinate complex behaves quite differently from the analogous benzoate complex solution. A multi-step decay occurs, revealing the presence of two intermediates not observed during reaction of the benzoate complex under the same conditions.

Supported by NIH Grant GM-38767