Comparison of curcumin, diacetylcurcumin and analogs as ligands for vanadyl, Ga(III) and In(III) complexes with therapeutic potential

Katherine H. Thompson1, Khosro Mohammadi1, John H. McNeill2, Chris Orvig1

1Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1, and 2Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada V6T 1Z3

Vanadyl bis(ligand) complexes have been investigated extensively as possible insulin enhancing agents and also, more recently, for other medicinal applications, including as cancer chemotherapeutic agents. Ga(III) tris(maltolato) and tris(qinolinato) complexes have also shown anticancer potential. In this study, novel bis(1,7-diaryl-1,6-heptadiene-3,5-dione) complexes with the formula, ML3, where M is Ga(III) or In(III), or of the formula, ML2 where M is [VO]2+, were synthesized and characterized by ESI-MS, FTIR, UV/vis and EA. The ligand, L, is any of: curcumin (bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione, cur), demethoxycurcumin (DMC), bisdemethoxycurcumin (BDC), diacetylcurcumin (DAC), or diacetylbisdemethoxycurcumin (bis[4-acetyl-3-hydroxyphenyl]-1,6-heptadiene-3,5-dione, DABC, a new ligand). Cytotoxic potential of curcumin ligands and their metal complexes was tested in mouse lymphoma cells by MTT assay. VO(cur)2, VO(DMC)2 and VO(DAC)2 were screened as potential insulin mimetic agents in STZ-diabetic rats.

Neither the vanadyl complexes nor the ligands alone showed any glucose-lowering effect in acute i.p. testing. In vitro, vanadyl complexes were more cytotoxic than ligands alone (with the exception of DABC, which was not different from VO(DABC)2) but not significantly different from each other, with IC50’s in the 5-10 µM range, where IC50 values represent the concentration of a test compound that is required for 50% reduction of cellular growth. Ga(cur)3 and In(cur)3 addition to cell cultures resulted in IC50 values in the same range as for vanadyl complexes; however, Ga(DAC)3 and In(DAC)3 were much less cytotoxic (IC50 = 20-30 µM) than Ga(cur)3 or In(cur)3. Since both β-diketone and phenolic OH groups are known to contribute to the antioxidant potential of curcumin, one can speculate that in Ga(DAC)3 and In(DAC)3, either or both of these functionalities may be hindered, causing a dramatic reduction in cytotoxic potential.