Fe L-edge XAS Definition of the Differences between Heme and Non-heme Fe Site Electronic Structures

Rosalie K. Hocking,1 Erik C. Wasinger,1 Yilong Yan,1 James P. Collman,1 F. Ann Walker,2 Michael T. Ashby,3 Keith O. Hodgson,1,4 Britt Hedman,4 and Edward I. Solomon1

1Department of Chemistry, Stanford University; 2Department of Chemistry, University of Arizona, 3University of Oklahoma Department of Chemistry and Biochemistry, 4Stanford Synchrotron Radiation Laboratory, Stanford University

Fe porphyrin compounds form the basis for electron transfer in a number of biological systems. In the redox cycles of the cytochromes both the Fe(II) and Fe(III) oxidation states are of functional significance. The delocalization of the Fe d-orbitals into the porphyrin ring and its effect on the redox chemistry of these systems has been difficult to study spectroscopically because of the dominant porphyrin π to π^* transitions. Recently, we have developed a methodology that allows for the interpretation of the multiplet structure of Fe L-edges in terms of differential orbital covalency (i.e. differences in delocalization of the different d orbitals) using a valence bond configuration interaction (VBCI) model.‡ Applied to heme systems, this methodology allows experimental study of the delocalization of the Fe d-orbitals into the porphyrin ring. The technique has been applied to a number of other systems that will also be discussed.

This work was supported by grants from the National Institute of Health: GM40392 to E.I.S and RR-01209 to K.O.H. and performed at SSRL, which is funded by the DOE Office of Basic Energy Sciences. The SSRL Structural Molecular Biology Program is supported by the NIH National Center for Research Resources, Biomedical Technology Program and by the DOE Office of Biological and Environmental Research.