Interactions of arsenic(III) with metallothionein and a model oligopeptide

Flávia C. S. de Paula¹, Nicolas A. Rey¹, Laurence Le Moyec² and Elene C. Pereira-Maia¹

¹ Department of Chemistry – Universidade Federal de Minas Gerais - Brazil
² Laboratory LPBC-CSSB, Université Paris 13 – France

Metallothioneins, small metal-rich proteins, appear to play a role in the homeostasis of essential metal ions and in the detoxification of non-essential ones. Among the 61 amino acids of its structure, 20 are cysteine residues. It is well known that arsenic(III) has a high affinity for sulfur-containing molecules. Previously we showed that As(III) forms AsL₃ species with cysteine and glutathione, which are the predominant species from acid to neutral medium¹.

In this study, as a model for metallothionein (MT), we have used a peptide containing three cysteinyl residues, which corresponds to residues 56-61 of mouse MT(I)². Rabbit liver Zn₂Cd₅MT(I) and H₂N-Lys-Cys-Thr-Cys-Cys-Ala-OH were purchased from Sigma. NMR spectra were obtained in D₂O solutions containing different metal-to-ligand molar ratios at pH 7.0. The stability constant was calculated from UV-Vis titration curves by means of the SQUAD program.

In the ¹H NMR MT spectrum, the two β methylene protons of Cys and the ε methylene protons of Lys appear overlapped at δ 3.02 and after addition of arsenic an upfield shift and a broadening of these signals occur. A high excess of arsenic over MT was necessary to displace zinc and cadmium from MT. Even in the presence of an As(III)-to-protein molar ratio equal to 100, saturation was not attained. In the oligopeptide ¹H NMR spectrum, the addition of arsenic also induces a broadening of the signals; the most affected being those of Cys and Lys residues at δ 3.41, 3.26, 3.07, 2.29, and 2.13. The broadening of the peaks probably results from the quadrupole moment of the ⁷⁵As nucleus (I = 3/2). In the UV-vis region, the addition of arsenic leads to the appearance of a shoulder centered at 280 nm, which can be assigned to a sulfur-to-arsenic charge transfer transition. The best fit between the experimental and calculated curves was obtained assuming the formation of an ML species with an apparent constant log β = 6.76 ± 0.04. We propose that As(III) forms a complex with the oligopeptide via the three sulfur atoms of cysteines in a pyramidal geometry.

This work was supported by grants from CNPq and FAPEMIG.