Searching for a New Paradigm in Metal-DNA Interactions: Selection and Characterization of Novel Metal-specific DNAzymes

Kevin E. Nelson¹, Andrea K. Brown², Peter J. Bruesehoff², Juewen Liu², Debapriya Mazumdar², Xiangli Meng², Geng Lu², and Yi Lu¹,²,*

Departments of Biochemistry¹ and Chemistry², University of Illinois at Urbana-Champaign

One of the most significant discoveries in bioinorganic chemistry is that DNA can be enzymes (and thus called DNAzymes) and almost all DNAzymes are metalloenzymes under physiological conditions. While much information has been obtained on metal-binding sites in proteins, similar information in nucleic acids is missing. To search for such a paradigm in metal-DNA interactions that help catalyze diverse ranges of reactions, we sought to use combinatorial biology technique called in vitro selection to obtain new DNAzymes from a large DNA library that are specific for metal ions such as Pb(II), Co(II), Zn(II), As(III), As(V), Fe(II), Fe(III), Hg(II) and U(VI) (1,2). By introducing a negative selection strategy into the in vitro selection process, a DNAzyme specific for Co(II) has also been developed and characterized, which may prove useful as a Co(II) spectroscopic handles to provide direct information about the ligand binding pocket (3). In order to select for DNAzyme systems that possess both high activity and increased structural stability, a Zn(II)-specific DNAzymes that is active at 90 ºC has been selected (4). Further selections and characterization of the DNAzymes (5) continue to demonstrate the adaptability of DNAzymes in forming metal specific ligand binding sites that will provide fundamental information to fill the current void of structure/function information on DNA-metal interactions. Practical applications of those DNAzymes as fluorescent and colorimetric biosensors for metal ions have also been demonstrated (6-8).

Sequence Alignment of Co2+-dependent DNAzymes

Clone 18 5’-TCTC TTGTATTAGCTACACTGTTAGTGCGATCGGGTCGTAATCTCG GTG-3’
Clone 11 5’-TCTC TTGTATTAGCTACACTGTTAGTGCATCGTTGTAACTCG GTG-3’