Arene Hydroxylation and Styrene Epoxidation by Copper-Dioxygen Complexes

Takahiro Matsumoto1, Masashi Kobino1, Masato Tomii1, Hideki Hayashi1, Hideki Furutachi1, Takehiko Tosya2, Shigenori Nagatomo2, Shuhei Fujinami1, Masatatsu Suzuki1, Teizo Kitagawa2, Takao Osako3, and Shinobu Itoh3

1Department of Chemistry, Kanazawa University, 2Center for Integrative Bioscience, Okazaki National Research Institutes, and 3Department of Chemistry, Graduate School of Science, Osaka City University

Copper-dioxygen chemistry is of particular interest in dioxygen activation chemistry in biological and industrial processes. In this study, we report on endogenous arene hydroxylation of a supporting ligand and exogenous styrene epoxidation by \(\mu^{2}\eta^{2}:\eta^{2}\)-peroxo complexes.

A \(\mu^{2}\eta^{2}:\eta^{2}\)-peroxo)dicopper(II) complex \([\text{Cu}_{2}(\text{O}_2)(\text{Me}_4\text{-pyxyl})]^{2+}\) (I) is capable of hydroxylation of benzene ring and epoxidation of styrene. To the best of our knowledge, this is the first example of the \(\mu^{2}:\eta^{2}\)-peroxo)dicopper(II) complex capable of epoxidation of styrene. Decay of I obeyed first-order kinetics and the activation parameters determined are \(\Delta H^\ddagger = 65 \text{ kJ mol}^{-1} \) and \(\Delta S^\ddagger = -2 \text{ J mol}^{-1} \text{ K}^{-1} \). The effects of \(p \)-substituents on the hydroxylation of benzene rings (\(R = \text{OMe}, \text{t-Bu}, \text{H}, \text{and NO}_2 \)) were also studied. The Hammet plot of the first order rate constants vs. \(\sigma^+ \) gave \(\rho = -2.0 \). The epoxidation by I is first order in I and styrene, respectively, and the activation energy was determined as \(E_a = 41 \text{ kJ mol}^{-1} \). The effects of \(p \)-substituents on the epoxidation of styrenes (\(R = \text{OMe}, \text{H}, \text{and Cl} \)) were also studied. The Hammet plot of the second order rate constants vs. \(\sigma^+ \) gave \(\rho = -1.9 \), which is similar to that found for the arene hydroxylation performed by I, suggesting that the epoxidation and arene hydroxylation reactions proceed via similar mechanism involving electrophilic attack of the peroxo ligand.