Metal-peptide Nanoassemblies

Mihail Tsurkan, Fei Xie, and Michael Y. Ogawa

Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43403

Both non-covalent and disulfide crosslinked α-helical coiled-coils are used as bridging ligands to join together [Pt(en)X\textsubscript{2}] coordination complexes in geometries dictated by the steric demands of the metal center, where en = ethylene diamine. The peptide used in this study were based on the IEALEGK heptad repeat which is known to form metal-substituted, two-stranded α-helical coiled-coils. However, in this work the non-natural amino acid 4-pyridyl alanine (Pal) was placed at the most solvent-exposed position of the second heptad repeat (PAL14). For some studies a cysteine residue was placed at position 19 which exists within the hydrophobic peptide-peptide interface of the coiled-coil (PAL14C19). These modifications were respectively made in order to incorporate a strong metal binding site into the peptide, and to engineer an inter-chain disulfide bond crosslink to stabilize the coiled-coil structure.

When Pt(en)(NO\textsubscript{3})\textsubscript{2} was treated with PAL14, a metal-peptide “corner unit” was prepared in which the pyridine sites of two peptide chains where coordinated to the cis positions of the square-planar Pt center. The circular dichroism spectrum of a sample of purified Pt corner units shows that multiple corner units do indeed self-assemble through the formation of non-covalent α-helical coiled-coils. Results indicate that the non-covalent association of Pt-peptide corner units produces assemblies of multiple corner units. The major product formed in this process corresponds to the assembly of perhaps 6 Pt-peptide corners. Related work involved the incubation of Pt(en)(NO\textsubscript{3})\textsubscript{2} with the disulfide crosslinked PAL14C19 coiled-coil peptide. Here, SDS-PAGE and MALDI-MS shows evidence for the assembly of 1-5 metal-peptide units where lower molecular weight products was favored, in contrast to the behavior observed for the assembly of non-crosslinked PAL14 units.