In vivo States of the Iron Sulfur Cluster of Pyruvate Formate-Lyase-Activating Enzyme

Jian Yang1, Sunil Naik2, Boi Hanh Huynh2, and Joan B. Broderick1

1Department of Chemistry, Michigan State University and 2Department of Physics, Emory University

Pyruvate formate-lyase-activating enzyme (PFL-AE) is a member of a novel superfamily of enzymes that reductively cleave S-adenosyl-L-methionine (SAM or AdoMet) to generate the extremely reactive 5'-deoxyadenosyl radical, which further generates the catalytically essential glycyl radical on pyruvate formate-lyase (PFL) for subsequent radical catalysis. A site-differentiated [4Fe-4S]1+ cluster has been identified in PFL-AE with [4Fe-4S]2+ state as the catalytically active form while the [4Fe-4S]2+ state is the oxidized counterpart during turnover. The ENDOR studies of PFL-AE with various isotopically labeled AdoMets have demonstrated direct coordination of AdoMet to the unique non-cysteine coordinated Fe.

All studies of PFL-AE to date have focused on the purified enzyme, in this study we shift our attention on \textit{in vivo} form. Two expression vectors one with and one without \textit{pflA} gene inserted, were transformed into the same BL21(DE3)plysS cells. The cells were grown and induced in 57Fe-enriched medium, and then either harvested or subjected to anaerobic and aerobic cycling by bubbling with N\textsubscript{2} or air. Samples were removed at different times at each stage and the cells were harvested by centrifugation. EPR and Mössbauer studies of these whole cell samples demonstrated oxygen-dependent cycling of cluster states.