Iron Binding Studies Of Yeast Frataxin

Kalyan C. Kondapalli¹, Simona V. Proteasa¹, Krisztina Z. Bencze¹,
Andrew Dancis² and Timothy L. Stemmler¹

Department of Biochemistry, School Of Medicine, Wayne State University¹, Detroit, MI 48201, Medicine Hematology/Oncology, University of Pennsylvania², Philadelphia, PA19106

Iron is an essential nutrient for all cells, and is required in many sub-cellular locations. The organelle with the greatest iron requirement is mitochondrion, where it is required for the assembly of the iron-sulfur centers and heme biosynthesis. Frataxin, a nuclear encoded mitochondrial protein plays a major role in mitochondrial iron homeostasis. Frataxin is the only known iron chaperone. Deficiency of Frataxin in humans leads to Friedreich's ataxia (the most prevalent form of the hereditary ataxias), a spinocerebellar degeneration disorder that causes progressive damage to the nervous system. The phenotype of this disorder is iron accumulation in mitochondria, seen predominantly in nerve and muscle cells (leading to oxidative stress) coupled with breakdown in heme and iron sulfur cluster assembly.

Our lab is the first to solve the solution structure of the full-length eukaryotic apo-frataxin (Yfh1). We have shown monomeric Yfh1 binds iron and have identified what we believe are the iron binding residues on the protein. Based on our experimental results, we developed a model for how Yfh1 binds iron. To examine the role of specific residues in iron binding, Yfh1 mutants with substitutions at our iron binding-residues were prepared and characterized for metal binding. Physiological relevance of our results was tested by in vivo studies of our mutants in S.cerevisiae. In vitro and in vivo results support our “two-site” binding model and indicate that the residues we identified are the iron binding residues of frataxin.