Models to Maquettes to Metalloproteins: Cobalt as a Spectroscopic Probe of Zinc Biochemistry

David L. Tierney,1 Alison L. Costello,1 William K. Myers,1 Michael W. Crowder,2 Gopal Periyannan,2 Patrick Crawford,2 Brian R. Gibney,3 Amy K. Petros,3 Walter Fast,4 Pei W. Thomas4

1Department of Chemistry, University of New Mexico
2Department of Chemistry, Miami University (OH)
3Department of Chemistry, Columbia University
4College of Pharmacy, University of Texas

The use of Co(II) as a spectroscopic surrogate for Zn(II) is a well-established protocol in metallobiochemistry, and the potential wealth of available information is reflected in the rich spectroscopy of the high-spin (hs) Co(II) ion. However, interpretation of spectroscopic observations in terms of structure and bonding is often hampered by complicated electronic structure. We will present here a systematic investigation of a growing library of model compounds, encompassing 4-, 5- and 6-coordination, utilizing simple chemical substitutions to interrogate individual hyperfine interactions. Our integrated approach to paramagnetic resonance, simultaneously applying EPR (X- and Q-band), ENDOR (X- and Q-band), NMR (100-500 MHz) and NMR dispersion (NMRD, νH = 1 – 80 MHz) offers unparalleled access to the molecular spin system. Correlation of native, Zn and Co-substituted enzyme studies is provided by x-ray absorption spectroscopy (XAS). Results on a series of metalloproteins maquettes and several Zn enzymes involved in bacterial proliferation, will also be presented.