In Vivo Optical Imaging Enabled by Soft-Matter Analogues of the Quantum Dots

P. Peter Ghoroghchian,1,2 Paul R. Frait,1 Kimihiro Susumu,1 Dana Blessington,3 Aaron K. Brannon,4 Frank S. Bates,4 Britton Chance,3 Daniel A. Hammer,2 and Michael J. Therien1

1Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
2School of Engineering and Applied Science, and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
3Johnson Research Foundation, Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
4Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA

Abstract: We demonstrate that in aqueous solution, hydrophobic conjugated-multi(porphyrin)-based near-infrared fluorophores (NIRFs) cooperatively self assemble with amphiphilic diblock copolymers to form polymersomes (100 nm – 20 μm diameter polymer vesicles). The thick membranes of these synthetic vesicles uniquely segregate and uniformly disperse large numbers of high emission dipole strength NIRFs. Extrusion methods enable isolation of homogeneous NIR-emissive polymersomes having a 100 nm uniform diameter. Long-wavelength optical excitation of such assemblies generates intense, highly localized emissive signals capable of penetrating through the dense tumor tissue of a live animal. Robust, NIR-emissive polymersomes thus define a soft matter platform with exceptional potential to facilitate deep-tissue fluorescence-based imaging for in vivo diagnostic and drug-delivery applications.