DNA modification and cleavage by a planar dinuclear nickel(II) Schiff-base complex with cationic substituents.

Yoshiteru Kakinuma, Hidekazu Arii, Makoto Chikira

Department of Applied Chemistry, Chuo University

It has been reported that cationic salen-type Schiff base metal complexes bind to DNA and the affinity and cleaving reactivity for DNA are affected by the bridging group in the quadridentate Schiff bases1). In this study, we have synthesized a novel dinuclear nickel(II) Schiff-base complex \([\text{Ni}_2(\text{MS}_2\text{dp})(\text{pz})]^{2+}\) (I) and investigated the DNA binding mode, evaluating the binding affinity and oxidative cleavage reactivity.

The hypochromism observed in the UV-vis spectra of I on addition of calf-thymus DNA indicated that the complex binds specifically (binding constant \(K_b^s = 3.1 \times 10^6 \text{ M}^{-1}\) and sites size number \(n_1 = 26\)) and non-specifically (\(K_b^{ns} = 3.1 \times 10^4 \text{ M}^{-1}\), \(n_2 = 6\)). In the case of mononuclear nickel(II) complex \([\text{Ni(MSen)}]^{2+}\) (2), the hypochromic effect was too small for the estimation of the binding constant. Furthermore, a positive induced CD band was observed weakly for I at around 350 nm whereas negative induced CD bands were observed for 2 in the range 400 – 450 nm. The \(K\) and \(n\) values for 2 have been estimated from the induced CD bands for specific binding (\(K_b^s = 1.1 \times 10^6 \text{ M}^{-1}\), \(n_1 = 20\)) and for non-specific binding (\(K_b^{ns} = 6.0 \times 10^4 \text{ M}^{-1}\), \(n_2 = 6\)), respectively 1).

I cleaved plasmid DNA with OXONE in 100mM cacodylic acid buffer (pH 7.4) at 37 °C more mildly than 2. Above results suggest that the di-nikel center of I is involved more deeply in the ds-DNA from the pyrazole side.

![Figure 1](image)

Figure 1 Structure of \([\text{Ni}_2(\text{MS}_2\text{dp})(\text{pz})]^{2+}\) (left) and \([\text{Ni(MSen)}]^{2+}\) (right)

1) K. Fukiura et al., Abstract of ICBIC12, 2005.