Aperture synthesis imaging

Theory of image reconstruction

Fabien Baron

University of Michigan

Monday 08 August 2012

PRINCIPLE BAYESIAN APPROACH

The imaging problem

- Model fitting
 - Small number of components (often of different nature) needed to generate an image
 - Well-posed problem Ndata > Ncomponents
 - Constraints on parameters to keep them physical
- Image reconstruction
 - this is still model-fitting...
 - High number of identical components
 - e.g. pixels, wavelets, etc.
 - Ill-posed problem Ndata << Npixels
 - prior information needed to regularize the solution

Bayes theorem applied to imaging

- We want to find the most probable image given the data and given other assumptions we will call "imaging model"
- Bayes theorem for the *a posteriori* probability

Gaussian white noise on data

$$\Pr(\boldsymbol{D}|\boldsymbol{i}, \boldsymbol{M}) \propto \exp\left[-\chi_{\boldsymbol{D}}^2(\boldsymbol{i})/2\right]$$

Generic prior form

Regularized maximum likelihood

$$J(\boldsymbol{i}) = \chi^2(\boldsymbol{i}) + \mu R(\boldsymbol{i})$$

regularization weight

- If i is a collection of pixel fluxes $\{i_n\}$, the most probable image is the one that maximizes J(i)
- Additional constraints
 - positivity
 - normalization to unity

$$\forall n, i_n \ge 0$$

$$\sum i_n = 1$$

n

A reconstruction is defined by...

- Image model:
 - spatial basis (pixels, components, wavelets)
- Data:
 - Likelihood expression depends on noise model
 - Normal distribution in OIFITS standard
- Priors/regularization:
 - sets conditioning and remove degeneracies
 - based on user expectation in absence of data
- Minimization strategy
 - initial image
 - strategy/algorithm to iterate toward solution

LIKELIHOOD CHARACTERITICS

Likelihood Expression

- OIFITS assumptions
 - Noise on observables is normally distributed
 - Chi-squared statistics
 - Modulus and phases of bispectra are independent
 - Uncorrelated errors
 - Power spectrum

$$\chi^{2}_{P_{ij}} = \frac{(|V_{ij}|^{2} - P^{\text{data}}_{ij})^{2}}{\sigma^{2}_{P^{\text{data}}_{ij}}}$$

Bispectrum

$$\chi^2_{B_{ijk}} = \frac{(|V_{ij}V_{jk}V_{ki}| - T^{\text{data}}_{ijk})^2}{\sigma^2_{T^{\text{data}}_{ijk}}} + \frac{(\arg\{V_{ij}V_{jk}V_{ki}\} - C^{\text{data}}_{ijk})^2}{\sigma^2_{C^{\text{data}}_{ijk}}}$$

Likelihood Local minima

- In radio a likelihood made of complex visibilities has a single global minimum
 - due to the uniqueness of the phase
- In optical the atmosphere partially destroys the phase information, with N telescopes:
 - N(N-1)/2 phases but (N-1)(N-2)/2 closure phases
 - N-1 missing parameters per snapshot
 - (Lannes 2001, Meimon et al. 2009)
- In particular, an image translated by any amount still has the same squared visibilities and bispectra
 - the likelihood is multi-modal
- N>3, other effects than translation are involved...

Likelihood A convex optimization problem ?

 Convex optimization regroups a wide variety of minimization algorithms

$$f(x^*) = \min\{f(x) : x \in \Lambda\}$$

 $f(x): \mathbb{R}^n \to \mathbb{R}$ should be a convex function Λ -should be a convex set

- includes most gradient descent methods
- found minima are global minima
- Convex set: a set of points containing all line segments between each pair of its points
- Convex function: a function whose graph forms a convex set
- Is the likelihood is convex ?

Likelihood pears and bananas

• The "pear" bispectrum probability is convex

Meimon et al., 2005

Likelihood pears and bananas

• The "banana" bispectrum probability is non-convex

Fig. 2. Noise distribution contour lines, for $\sigma_r/|z_0| < \sigma_{\varphi}$.

REGULARIZATION

Regularization Flux regularizers

- In absence of data, the image i should default to i^0
 - i^0 is called a prior image
 - most often chosen null, but not always
- Support constraint
 - outside region of interest, $i^0 = 0$
- A flux regularizer imposes this constraint using:

$$R(i) = \ell_p(\boldsymbol{i})^k$$
 or $R(i) = \ell_p(\boldsymbol{i} - \boldsymbol{i^0})^k$
 $\ell_p(\boldsymbol{x}) = \left(\sum_n |x_n|^p\right)^{rac{1}{p}}$

Why priors ?

- Fabien Baron Aperture synthesis imaging
- Needed because of the ill-posed nature of the reconstruction problem
 - Impose physical constraints
 - e.g. stellar disc diameter known
 - Lift likelihood ambiguities
 - fix center of image
 - Ease the reconstruction
 - "override" non-convexity

Regularization Flux regularizers

$$\ell_0(\boldsymbol{i}) = \operatorname{Card}\{j; x_j \neq 0\}$$

$$\ell_1(oldsymbol{i}) = \sum_n |i_n| \ \ell_2^2(oldsymbol{i}) = \sum_n i_n^2$$

$$R(\boldsymbol{i}) = \sum_{n} w_{n} i_{n}^{2}$$

$$R(\mathbf{i}) = \sum_{n} i_n - i_n^0 - i_n \log \frac{i_n}{i_n^0}$$

number of non-zero pixels Low and high fluxes are allowed Sharp and mostly noise-free image Constant (normalization + positivity) Useless

Fluxes are penalized quadratically High fluxes will be rare, smooth image But less dynamic range, artefacts

 $w_n \propto \theta$, compactness (Gull-Skilling 1998, Le Besnerais 2008)

Maximum entropy regularizer $\ell_1\ell_2$ behavior Linear for high fluxes Quadratic for low fluxes Good dynamic range Imposes positivity automatically

Regularization Total variation

 Total variation (Chen 1998) imposes sparsity on the local gradient

$$\ell_1(\boldsymbol{\nabla} \boldsymbol{i}) = \sum_n |\nabla i_n|$$

- Favors patches of uniform fluxes separated by sharp transitions
- Local gradient is computed by the 5-point stencil method or simply by:

$$|\nabla i|^2 = (i_{n+1,m} - i_{n,m})^2 + (i_{n,m+1} - i_{n,m})^2$$

- This can be applied to reconstruction of mostly uniform objects
- The idea of sparsity will be presented in depth-tomorrow

Comparison of regularizers

Comparison of regularizers

Regularization Weight of regularization

$$J(\boldsymbol{i}) = \chi^2(\boldsymbol{i}) + \mu R(\boldsymbol{i}$$

TV (1E4)

4-

2-

0-

-2

-4

-6-

6

relative α (milliarcseconds)

relative & (milliarcseconds)

Rule of thumb $\chi^2_r \simeq 1$

TV (1E5)

4-

2-

0-

-2-

-4

-6-

6

relative & (milliarcseconds)

+5.40e-04

+4.86e-04

+4.32e-04

+3.78e-04

+3.24e-04

+2.70e-04

+2.16e-04

+1.62e-04

+1.08e-04

+5.40e-05

+0.00e+00

Thiebaut 2008

MINIMIZATION METHODS

Minimization methods Gradient descent

- Compute the gradient of criterion with respect to every image pixel
 - scale it by a reasonable factor
 - optionally, use an history of previous gradient
 - e.g.: steepest descent (BBM), conjugate gradients (IRS), semi-Newton with line search (MiRA), trust region method (BSMEM)
 - Subtract this from the current image
 - but not for pixels that may become negative
- Repeat until convergence, based on:
 - variation of criterion from one image to the next
 - modulus of the criterion gradient
- Convexity is needed to converge to a global minimum...

Minimization methods Monte Carlo Markov Chain

- Fluxes randomly move within the pixel grid
- Images with better criterion values are more likely to be accepted
- Simulated annealing/tempering: amount of movement is regulated by a temperature
 - Hot ? Fluxes move rather freely
 - Colder ? Image is settling progressively
- Supposed to find the global minimum
 - In practice, need good initialization

Aperture synthesis imaging

Main algorithms & packages

Fabien Baron

University of Michigan

Monday 08 August 2012

Building Block Method

- K.-H. Hofmann & G. Weigelt, 1993
- Image model : building blocks
 - One BB = delta function characterized by weight + location
- Data : bispectra

$$f_{data}(i) = \sum_{k} w_{k} |V_{ab,k} V_{bc,k} V_{ac,k}^{*} - B_{k}^{data}|^{2}$$
$$w_{k} = \frac{|V_{ab,k} V_{bc,k} V_{ac,k}^{*} - B_{k}^{data}|^{2}}{|V_{ab,k} V_{bc,k} V_{ac,k}^{*} - B_{k}^{data}|^{2} + Var(B_{k}^{data})}$$

- Expression similar to Wiener filter
- Weights depend on searched parameters

Building Block Method

- Regularization :
 - sparsity, minimize the number of blocks (sharp images)

$$R_{\text{prior}}(\boldsymbol{i}) = \mu \|\boldsymbol{i}\|_{0} = \mu \operatorname{Card}(\{j; i_{j} \neq 0\})$$

- positivity and support constraint easily imposed
- Minimization : Matching pursuit
 - iterative reconstruction (linear approximation of the criterion, steepest descent on weight/location gradients)
 - basically CLEAN using bispectra...
- Negative blocks and multiple blocks can also be used
- Advantages:
 - Rather fast
 - Best software for sparse reconstructions
- Problems:
 - Most objects are not especially sparse...

- University of Cambridge (Buscher 94, Baron 2008)
- Image model : image pixels (+ 'experimental' wavelet coefficients)
- Likelihood : uses power spectra and bispectra
- Regularization: Maximum entropy
- Minimization method: Trust region method, local quadratic approximation of the criterion

$$J(\boldsymbol{i} + \delta \boldsymbol{i}) = J(\boldsymbol{i}) + \delta \boldsymbol{i}^T \nabla J + \frac{1}{2} \delta \boldsymbol{i}^T \nabla \nabla J \delta \boldsymbol{i}$$

- Requires transposed transform and diagonal Hessian matrix
- Evaluation of the "trust region" in which this model is valid
 Similar to Levenberg algorithm
- One step move to the minimum:

$$\delta \boldsymbol{i} = -(\nabla \nabla J + \beta \boldsymbol{I})^{-1} \nabla J$$

• Reconstruction of BC2004 data (Lawson et al. 2004)

u baseline (m)

- Advantages:
 - Speed
 - Reconstruction of binaries, because of fast exploration of the posterior
 - Automatic estimation of the regularization weight based on reduced chi-squared, or based on evidence (talk tomorrow)
- Problems:
 - Lack of regularization choices
 - Lack of control on the support of the reconstruction
 - Leading to artifacts...
 - Falls into local minima
 - Cannot do model-fitting simultaneously...

MIRA

- University of Lyon (Eric Thiebaut, 2004)
- Image model : image pixels
- Likelihood : uses power spectra, bispectra, differential vis.
- Regularization: most common ones with gradients
- Minimization method: limited memory semi-Newton, with gradient projection onto positive definite domain
- Semi-Newton builds an approximation of the Hessian from the evolution of the gradient, using little memory
- Advantages:
 - Speed
 - Reconstruction of binaries, fast exploration of the posterior
 - Vast choice of priors
- Problems:
 - Falls into local minima
 - Cannot do model-fitting simultaneously...

MACIM

MACIM

- MArkov Chain IMager, John Monnier + Mike Ireland (2006)
- Global optimization by stochastic exploration of the posterior probability
- Data : any, easily implemented
- Regularization : any regularizer, including those with no analytic gradients
- Minimization :
 - Markov Chain, simulated annealing = analogous physical process of heating and then slowly cooling a substance to obtain a strong crystalline structure (iron, chocolate...)

Repeat {

while NOT(minimum criterion at temperature T) {
Perturb the image (add/move/swap/change pixels)
Accept this new image with probability

$$p = \min \left[1, \exp \left(-\Delta \chi^2 / 2T - \mu \Delta R_{\text{prior}} \right) \right]$$

} until criterion is minimum for T Decrease T according to cooling schedule until global minimum reached

MACIM – Simulated annealing

MACIM

- Advantages:
 - Simulated annealing search for the global minimum
 - Has limited model-fitting capabilities
 - joint estimation of any parameter possible in theory (ex: the regularization weight)
- Problems:
 - Choice of tuning parameters (cooling schedule, acceptance threshold)
 - Slower than local 'gradient based' optimization
 - Convergence to the global minimum in limited time not guaranteed
 - may still fall into local minima as the criterion is heavily multimodal (newer samplers may solve this)
 - Initialization is important (e.g. hard to find both components of a binary)

WISARD

WISARD

- ONERA, Meimon et al. (2005 & 2009)
- Missing phase = visibility phase closure information
 - if N stations, N-1 "differential pistons" parameters per snapshot
- Model : 'explicit' method = image pixels + missing phase parameters
- Data : pseudo-data of complex visibilities are formed
 - Visibility moduli + errors derived from powerspectra + errors
 - Phases + errors derived from closure phase data + missing phase parameters
 - likelihood based on rotated complex visibilities

WISARD – Self calibration

• Alternating minimization scheme similar to self-calibration in radio

Step 1: initialization

Choose a starting image and regularization hyperparameter

Step 2: self-calibration

Find the optimal missing phase parameters for the current image by minimising the likelihood (exhaustive search possible for N=3)

Step 3: image reconstruction

Find the optimal image for the current missing phase parameters by minimising the full criterion (likelihood + regularization)

Repeat 2 and 3 till convergence

WISARD

• Regularization: same vast choice as MIRA

- Advantages
 - useful in weak phase case (N<5)
- Problems
 - Orphan powerspectra unused, bispectrum moduli unused
 - Quite slow
 - Comparison with MIRA shows very little difference
 - Self-calibration convergence depends on SNR...

Summary – Algorithmic strategies

	MIRA	BSMEM	WISARD	BBM/IRS	MACIM
Data	All	Bispectra Powerspectra	Pseudo-complex visibility data formed from phase closures + powerspectra	Bispectra	All
Regularization	Positivity L1, TV, L2, L1L2, maximum entropy floating priors	Maximum entropy with prior image Wavelets	∼ same as MIRA	Positivity Sparseness	Any type of regularization
Minimization scheme	Bound- constrained semi-Newton gradient descent	Trust region method (+unsupervised hyperparameter control)	Self calibration	Matched Pursuit (BBM) Conjugate gradient (IRS)	Simulated annealing

• Main difference = flexibility

Imaging Beauty Contest 2006

MIRA, BSMEM, WIZARD on LkHa

- Giovanelli 2008, Baron 2008
- Feature comparison
 - same results with the same type of regularization
- More regularization/image model choices = more adaptability

Summary

- No Ultimate Black Box Algorithm[™] yet
- Reconstruction quality determined by user choices
- Current challenges:
 - optimal choices of priors and initial image
 - Identification of artefacts
 - simultaneous model fitting
 - optimal reconstruction from multi-frequency datasets
 - reconstruction on non-planar surface (spheroids)