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Aperture synthesis imaging

Theory of image reconstruction
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PRINCIPLE

BAYESIAN APPROACH
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The imaging problem

● Model fitting
– Small number of components (often of different 

nature) needed to generate an image
– Well-posed problem Ndata > Ncomponents
– Constraints on parameters to keep them physical

● Image reconstruction
– this is still model-fitting...
– High number of identical components

● e.g. pixels, wavelets, etc.
– Ill-posed problem  Ndata << Npixels
– prior information needed to regularize the solution
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Bayes theorem applied to imaging

● We want to find the most probable image given the data and given other 
assumptions we will call “imaging model”

● Bayes theorem for the a posteriori probability

image data imaging model  (image description, prior choices, ...)

marginal likelihood
const. for given reconst.

likelihood
prior

Gaussian white noise on data

Generic prior form
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Regularized maximum likelihood

● If    is a collection of pixel fluxes         , the most 
probable image is the one that maximizes   

● Additional constraints
– positivity
– normalization to unity

regularization weight
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A reconstruction is defined by...

● Image model: 
– spatial basis (pixels, components, wavelets)

● Data: 
– Likelihood expression depends on noise model
– Normal distribution in OIFITS standard

● Priors/regularization: 
– sets conditioning and remove degeneracies
– based on user expectation in absence of data

● Minimization strategy
– initial image
– strategy/algorithm to iterate toward solution
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LIKELIHOOD

CHARACTERITICS
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Likelihood
Expression

● OIFITS assumptions
– Noise on observables is normally distributed

● Chi-squared statistics
– Modulus and phases of bispectra are independent
– Uncorrelated errors

● Power spectrum 

● Bispectrum 



F
ab

ie
n 

B
ar

on
 –

 A
pe

rt
ur

e 
sy

nt
he

si
s 

im
ag

in
g

Likelihood
Local minima

● In radio a likelihood made of complex visibilities has 
a single global minimum 

– due to the uniqueness of the phase
● In optical the atmosphere partially destroys the 

phase information, with N telescopes: 
– N(N-1)/2 phases but (N-1)(N-2)/2 closure phases
– N-1 missing parameters per snapshot 

● (Lannes 2001, Meimon et al. 2009)
● In particular, an image translated by any amount 

still has the same squared visibilities and bispectra
– the likelihood is multi-modal

● N>3, other effects than translation are involved... 
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Likelihood 
A convex optimization problem ?

● Convex optimization regroups a wide variety of 
minimization algorithms

– includes most gradient descent methods
– found minima are global minima

● Convex set: a set of points containing all line 
segments between each pair of its points

● Convex function: a function whose graph forms a 
convex set

● Is the likelihood is convex ?

should be a convex set

should be a convex function



F
ab

ie
n 

B
ar

on
 –

 A
pe

rt
ur

e 
sy

nt
he

si
s 

im
ag

in
g

Likelihood
pears and bananas

● The “pear” bispectrum probability is convex

Meimon et al., 2005

The circular approximation
is the Goodman model

Used in radio
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Likelihood
pears and bananas

● The “banana” bispectrum probability is non-convex

Meimon et al., 2005

Elliptic Gaussian
Approximation 

required for convexity



F
ab

ie
n 

B
ar

on
 –

 A
pe

rt
ur

e 
sy

nt
he

si
s 

im
ag

in
g

χ2(i) = ∑
k [ (Bk−Bk

data ) .e rad
σ rad , k
2

+
(Bk−Bk

data ) .e tan
σ tan , k
2 ]

rotation of the bispectrum
Vector 

+ approximation of the 
real and imaginary parts 

of the rotated vector
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REGULARIZATION
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● In absence of data, the image   should default to  
–       is called a prior image
– most often chosen null, but not always 

● Support constraint
– outside region of interest,    

● A flux regularizer imposes this constraint using: 

Regularization
Flux regularizers

or
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Why priors ?

● Needed because of the ill-posed nature of the reconstruction 
problem

– Impose physical constraints
● e.g. stellar disc diameter known

– Lift likelihood ambiguities
● fix center of image

– Ease the reconstruction
● “override” non-convexity
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Regularization
Flux regularizers

number of non-zero pixels
Low and high fluxes are allowed
Sharp and mostly noise-free image

Constant (normalization + positivity)
Useless

Fluxes are penalized quadratically
High fluxes will be rare, smooth image
But less dynamic range, artefacts

Maximum entropy regularizer
         behavior
Linear for high fluxes
Quadratic for low fluxes
Good dynamic range
Imposes positivity automatically

           , compactness 
(Gull-Skilling 1998, Le Besnerais 2008)
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Regularization
Total variation

● Total variation (Chen 1998) imposes sparsity on the local 
gradient

● Favors patches of uniform fluxes separated by sharp 
transitions

● Local gradient is computed by the 5-point stencil method or 
simply by:

● This can be applied to reconstruction of mostly uniform 
objects

● The idea of sparsity will be presented in depth-tomorrow 
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Comparison of regularizers

Renard et al. 2011

TV Compactness

L2 Max Ent
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Comparison of regularizers

Truth
Convolved to

array resolution

Maximum
Entropy

Total
variation
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Regularization
Weight of regularization

Thiebaut 2008

Rule of thumb
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MINIMIZATION

METHODS
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Minimization methods
Gradient descent

● Compute the gradient of criterion with respect to every 
image pixel

– scale it by a reasonable factor
– optionally, use an history of previous gradient
– e.g.: steepest descent (BBM), conjugate gradients 

(IRS), semi-Newton with line search (MiRA), trust 
region method (BSMEM)

● Subtract this from the current image
– but not for pixels that may become negative

● Repeat until convergence, based on:
– variation of criterion from one image to the next
– modulus of the criterion gradient

● Convexity is needed to converge to a global minimum...
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Minimization methods
Monte Carlo Markov Chain

● Fluxes randomly move within the pixel grid
● Images with better criterion values are more likely to 

be accepted
● Simulated annealing/tempering: amount of 

movement is regulated by a temperature
– Hot ? Fluxes move rather freely
– Colder ? Image is settling progressively

● Supposed to find the global minimum
– In practice, need good initialization
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BBM/IRS
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Building Block Method
● K.-H. Hofmann & G. Weigelt, 1993
● Image model : building blocks

– One BB = delta function characterized by weight + location

● Data : bispectra

f data (i ) = ∑
k

wk ∣V ab , k V bc , k V ac , k
∗ −Bk

data∣2

w k=
∣V ab ,k V bc ,k V ac ,k

∗
−Bk

data∣
2

∣V ab , k V bc ,k V ac ,k
∗

−Bk
data∣

2
+Var (B k

data )

– Expression similar to Wiener filter
– Weights depend on searched parameters
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Building Block Method

– positivity and support constraint easily imposed

● Minimization : Matching pursuit
– iterative reconstruction (linear approximation of the criterion, 

steepest descent on weight/location gradients)
– basically CLEAN using bispectra...

● Negative blocks and multiple blocks can also be used
● Advantages:

– Rather fast
– Best software for sparse reconstructions

● Problems:
– Most objects are not especially sparse...

● Regularization :
– sparsity, minimize the number of blocks (sharp images)

Rprior (i ) = μ ∥i∥0 = μ Card ({ j ; i j≠0})
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BSMEM
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BSMEM
● University of Cambridge (Buscher 94, Baron 2008)
● Image model : image pixels (+ 'experimental' wavelet coefficients )
● Likelihood : uses power spectra and bispectra
● Regularization: Maximum entropy
● Minimization method: Trust region method, local quadratic 

approximation of the criterion

● Requires transposed transform and diagonal Hessian matrix
● Evaluation of the “trust region” in which this model is valid

– Similar to Levenberg algorithm
● One step move to the minimum:
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BSMEM

● Reconstruction of BC2004 data (Lawson et al. 2004)
Truth image

BSMEM MAP image
Truth convolved

to array 
resolution
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BSMEM

● Advantages:
– Speed
– Reconstruction of binaries, because of fast exploration of the 

posterior
– Automatic estimation of the regularization weight based on reduced 

chi-squared, or based on evidence (talk tomorrow)

● Problems:
– Lack of regularization choices
– Lack of control on the support of the reconstruction

● Leading to artifacts...
– Falls into local minima
– Cannot do model-fitting simultaneously...
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MIRA
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MiRA
● University of Lyon (Eric Thiebaut, 2004)
● Image model : image pixels
● Likelihood : uses power spectra, bispectra, differential vis. 
● Regularization: most common ones with gradients
● Minimization method: limited memory semi-Newton, with gradient 

projection onto positive definite domain
● Semi-Newton builds an approximation of the Hessian from the 

evolution of the gradient, using little memory
● Advantages:

– Speed
– Reconstruction of binaries, fast exploration of the posterior
– Vast choice of priors

● Problems:
– Falls into local minima
– Cannot do model-fitting simultaneously...
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MACIM
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MACIM
● MArkov Chain IMager, John Monnier +Mike Ireland (2006)
● Global optimization by stochastic exploration of the posterior 

probability 
● Data : any, easily implemented
● Regularization : any regularizer, including those with no analytic 

gradients
● Minimization :

– Markov Chain, simulated annealing = analogous physical process of 
heating and then slowly cooling a substance to obtain a strong 
crystalline structure (iron, chocolate...)

Repeat { 
while NOT(minimum criterion at temperature T) {

Perturb the image (add/move/swap/change pixels)
Accept this new image with probability  

} until criterion is minimum for T
Decrease T according to cooling schedule

} until global minimum reached

p=min [1,exp (−Δχ2/2T−μΔ Rprior ) ]
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MACIM – Simulated annealing
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MACIM

● Advantages:
– Simulated annealing search for the global minimum
– Has limited model-fitting capabilities

● joint estimation of any parameter possible in theory (ex: the 
regularization weight)

● Problems:
– Choice of tuning parameters (cooling schedule, acceptance 

threshold)
– Slower than local 'gradient based' optimization
– Convergence to the global minimum in limited time not guaranteed

● may still fall into local minima as the criterion is heavily multi-
modal (newer samplers may solve this)

● Initialization is important (e.g. hard to find both components of a 
binary)
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WISARD
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WISARD
● ONERA, Meimon et al. (2005 & 2009)
● Missing phase = visibility phase – closure information

– if N stations, N-1 “differential pistons” parameters per snapshot

● Model : 'explicit' method = image pixels + missing phase parameters

● Data : pseudo-data of complex visibilities are formed
● Visibility moduli + errors derived from powerspectra + errors
● Phases + errors derived from closure phase data + missing phase 

parameters
– likelihood based on rotated complex visibilities
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WISARD – Self calibration

Step 1: initialization
Choose a starting image and regularization hyperparameter

Step 2: self-calibration
Find the optimal missing phase parameters for the current 
image by minimising the likelihood (exhaustive search 
possible for N=3)

Step 3: image reconstruction
Find the optimal image for the current missing phase 
parameters by minimising the full criterion (likelihood + 
regularization)

Repeat 2 and 3 till convergence

● Alternating minimization scheme similar to self-calibration in radio
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WISARD
● Regularization: same vast choice as MIRA

● Advantages
– useful in weak phase case (N<5)

● Problems
– Orphan powerspectra unused, bispectrum moduli unused
– Quite slow
– Comparison with MIRA shows very little difference
– Self-calibration convergence depends on SNR...

Quadratic+Lorentzian prior
Truth convolved 

to array 
resolution

L1L2+uniform prior
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Summary – Algorithmic strategies

Simulated 
annealing

Matched Pursuit 
(BBM)

Conjugate 
gradient
(IRS) 

Self calibration

Trust region 
method

(+unsupervised 
hyperparameter 

control)

Bound-
constrained 
semi-Newton 

gradient descent 

Minimization 
scheme

Any type of 
regularization

Positivity
Sparseness

~ same as MIRA
Maximum entropy 
with prior image

Wavelets

Positivity
L1, TV, L2, L1L2, 
maximum entropy 

floating priors

Regularization

AllBispectraPseudo-complex 
visibility data
formed from

phase closures + 
powerspectra

Bispectra

Powerspectra

AllData

MACIMBBM/IRSWISARDBSMEMMIRA

● Main difference = flexibility
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Imaging Beauty Contest 2006

MACIMBBMMIRABSMEM

(Lawson et al., 2006)Object

Reconstructions
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MIRA, BSMEM, WIZARD on LkHa

● Giovanelli 2008, Baron 2008
● Feature comparison

– same results with the same type of regularization

● More regularization/image model choices = more adaptability
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Summary

● No Ultimate Black Box Algorithm™ yet
● Reconstruction quality determined by user choices
● Current challenges:

– optimal choices of priors and initial image
– Identification of artefacts 
– simultaneous model fitting
– optimal reconstruction from multi-frequency datasets
– reconstruction on non-planar surface (spheroids)


