Aperture synthesis imaging

Theory of image reconstruction

Fabien Baron

University of Michigan
Monday 08 August 2012

PRINCIPLE BAYESIAN APPROACH

The imaging problem

- Model fitting
- Small number of components (often of different nature) needed to generate an image
- Well-posed problem Ndata > Ncomponents
- Constraints on parameters to keep them physical
- Image reconstruction
- this is still model-fitting...
- High number of identical components
- e.g. pixels, wavelets, etc.
- III-posed problem Ndata << Npixels
- prior information needed to regularize the solution

Bayes theorem applied to imaging

- We want to find the most probable image given the data and given other assumptions we will call "imaging model"
- Bayes theorem for the a posteriori probability prior
 const. for given reconst.
image data imaging model (image description, prior choices, ...)

Gaussian white noise on data

$$
\operatorname{Pr}(\boldsymbol{D} \mid \boldsymbol{i}, \boldsymbol{M}) \propto \exp \left[-\chi_{\boldsymbol{D}}^{2}(\boldsymbol{i}) / 2\right]
$$

Generic prior form

$$
\operatorname{Pr}(\boldsymbol{i} \mid \boldsymbol{M}) \propto \exp [\mu R(\boldsymbol{i})]
$$

Regularized maximum likelihood

$$
J(\boldsymbol{i})=\chi^{2}(\boldsymbol{i})+\mu R(\boldsymbol{i})
$$

regularization weight
If \boldsymbol{i} is a collection of pixel fluxes $\left\{i_{n}\right\}$, the most probable image is the one that maximizes $J(\boldsymbol{i})$

- Additional constraints
- positivity

$$
\forall n, i_{n} \geq 0
$$

- normalization to unity

$$
\sum_{n} i_{n}=1
$$

A reconstruction is defined by...

- Image model:
- spatial basis (pixels, components, wavelets)
- Data:
- Likelihood expression depends on noise model
- Normal distribution in OIFITS standard
- Priors/regularization:
- sets conditioning and remove degeneracies
- based on user expectation in absence of data
- Minimization strategy
- initial image
- strategy/algorithm to iterate toward solution

LIKELIHOOD CHARACTERITICS

Likelihood Expression

- OIFITS assumptions
- Noise on observables is normally distributed - Chi-squared statistics
- Modulus and phases of bispectra are independent
- Uncorrelated errors
- Power spectrum
- Bispectrum

$$
\chi_{P_{i j}}^{2}=\frac{\left(\left|V_{i j}\right|^{2}-P_{i j}^{\mathrm{data}}\right)^{2}}{\sigma_{P_{i j}^{\text {data }}}^{2}}
$$

$$
\chi_{B_{i j k}}^{2}=\frac{\left(\left|V_{i j} V_{j k} V_{k i}\right|-T_{i j k}^{\mathrm{data}}\right)^{2}}{\sigma_{T_{i j k}^{\mathrm{data}}}^{\text {dat }}}+\frac{\left(\arg \left\{V_{i j} V_{j k} V_{k i}\right\}-C_{i j k}^{\mathrm{data}}\right)^{2}}{\sigma_{C_{i j k}^{\mathrm{data}}}^{2}}
$$

- In radio a likelihood made of complex visibilities has a single global minimum
- due to the uniqueness of the phase
- In optical the atmosphere partially destroys the phase information, with N telescopes:
- $\mathrm{N}(\mathrm{N}-1) / 2$ phases but ($\mathrm{N}-1$)($\mathrm{N}-2$)/2 closure phases
- N-1 missing parameters per snapshot
- (Lannes 2001, Meimon et al. 2009)
- In particular, an image translated by any amount still has the same squared visibilities and bispectra
- the likelihood is multi-modal
- $N>3$, other effects than translation are involved...

Likelihood

A convex optimization problem?

- Convex optimization regroups a wide variety of minimization algorithms

$$
\begin{aligned}
& f\left(x^{*}\right)=\min \{f(x): x \in \Lambda\} \\
& f(x): \mathbb{R}^{n} \rightarrow \mathbb{R} \text { should be a convex function } \\
& \Lambda \text { should be a convex set }
\end{aligned}
$$

- includes most gradient descent methods
- found minima are global minima
- Convex set: a set of points containing all line segments between each pair of its points
- Convex function: a function whose graph forms a convex set
- Is the likelihood is convex ?

Likelihood pears and bananas

- The "pear" bispectrum probability is convex

Meimon et al., 2005

Likelihood

 pears and bananas- The "banana" bispectrum probability is non-convex

Fig. 2. Noise distribution contour lines, for $\sigma_{r} /\left|z_{0}\right|<\sigma_{\varphi}$.

$$
\chi^{2}(\boldsymbol{i})=\sum_{k}\left[\frac{\left(B_{k}-B_{k}^{\mathrm{data}}\right) \cdot \boldsymbol{e}_{\mathrm{rad}}}{\sigma_{\mathrm{rad}, k}^{2}}+\frac{\left(B_{k}-B_{k}^{\mathrm{data}}\right) \cdot \boldsymbol{e}_{\mathrm{tan}}}{\sigma_{\mathrm{tan}, k}^{2}}\right]
$$

REGULARIZATION

Regularization

Flux regularizers

- In absence of data, the image i should default to i^{0}
- i^{0} is called a prior image
- most often chosen null, but not always
- Support constraint
- outside region of interest, $\boldsymbol{i}^{\mathbf{0}}=0$
- A flux regularizer imposes this constraint using:

$$
\begin{gathered}
R(i)=\ell_{p}(\boldsymbol{i})^{k} \quad \text { or } \quad R(i)=\ell_{p}\left(\boldsymbol{i}-\boldsymbol{i}^{\mathbf{0}}\right)^{k} \\
\ell_{p}(\boldsymbol{x})=\left(\sum_{n}\left|x_{n}\right|^{p}\right)^{\frac{1}{p}}
\end{gathered}
$$

Why priors?

- Needed because of the ill-posed nature of the reconstruction problem
- Impose physical constraints
- e.g. stellar disc diameter known
- Lift likelihood ambiguities
- fix center of image
- Ease the reconstruction
- "override" non-convexity

Regularization Flux regularizers

$$
\ell_{0}(\boldsymbol{i})=\operatorname{Card}\left\{j ; x_{i} \neq 0\right\} \text { number of non-zero pixels }
$$

Low and high fluxes are allowed Sharp and mostly noise-free image

$$
\begin{aligned}
& \ell_{1}(\boldsymbol{i})=\sum_{n}\left|i_{n}\right| \\
& \ell_{2}^{2}(\boldsymbol{i})=\sum_{n} i_{n}^{2}
\end{aligned}
$$

$$
R(\dot{\boldsymbol{z}})=\sum_{n} u_{n} \dot{q}_{n}^{2}
$$

Constant (normalization + positivity) Useless

Fluxes are penalized quadratically High fluxes will be rare, smooth image But less dynamic range, artefacts
$w_{n} \propto \theta$, compactness
(Gull-Skilling 1998, Le Besnerais 2008)
Maximum entropy regularizer $\ell_{1} \ell_{2}$ behavior

$$
R(\boldsymbol{i})=\sum_{n} i_{n}-i_{n}^{0}-i_{n} \log \frac{i_{n}}{i_{n}^{0}} \begin{aligned}
& \text { Linear for high fluxes } \\
& \begin{array}{l}
\text { Quadratic for low fluxes } \\
\text { Good dynamic range } \\
\text { Imposes positivity automatically }
\end{array}
\end{aligned}
$$

Regularization Total variation

- Total variation (Chen 1998) imposes sparsity on the local gradient

$$
\ell_{1}(\boldsymbol{\nabla} \boldsymbol{i})=\sum_{n}\left|\nabla i_{n}\right|
$$

- Favors patches of uniform fluxes separated by sharp transitions
- Local gradient is computed by the 5-point stencil method or simply by:

$$
|\nabla i|^{2}=\left(i_{n+1, m}-i_{n, m}\right)^{2}+\left(i_{n, m+1}-i_{n, m}\right)^{2}
$$

- This can be applied to reconstruction of mostly uniform objects
- The idea of sparsity will be presented in depth-tomorrow

Comparison of regularizers

Comparison of regularizers

Maximum Entropy

Truth

Convolved to array resolution
variation

Regularization Weight of regularization

$$
J(\boldsymbol{i})=\chi^{2}(\boldsymbol{i})+\mu R(\boldsymbol{i})
$$

Rule of thumb

$$
\chi_{r}^{2} \simeq 1
$$

Thiebaut 2008

MINIMIZATION METHODS

Minimization methods Gradient descent

- Compute the gradient of criterion with respect to every image pixel
- scale it by a reasonable factor
- optionally, use an history of previous gradient
- e.g.: steepest descent (BBM), conjugate gradients (IRS), semi-Newton with line search (MiRA), trust region method (BSMEM)
- Subtract this from the current image
- but not for pixels that may become negative
- Repeat until convergence, based on:
- variation of criterion from one image to the next
- modulus of the criterion gradient
- Convexity is needed to converge to a global minimum...

Minimization methods Monte Carlo Markov Chain

- Fluxes randomly move within the pixel grid
- Images with better criterion values are more likely to be accepted
- Simulated annealing/tempering: amount of movement is regulated by a temperature
- Hot? Fluxes move rather freely
- Colder? Image is settling progressively
- Supposed to find the global minimum
- In practice, need good initialization

Aperture synthesis imaging

Main algorithms \& packages

Fabien Baron

University of Michigan
Monday 08 August 2012

BBM/IRS

Building Block Method

- K.-H. Hofmann \& G. Weigelt, 1993
- Image model : building blocks
- One BB = delta function characterized by weight + location
- Data : bispectra

$$
\begin{gathered}
f_{\text {data }}(\boldsymbol{i})=\sum_{k} w_{k}\left|V_{a b, k} V_{b c, k} V_{a c, k}^{*}-B_{k}^{\mathrm{data}}\right|^{2} \\
w_{k}=\frac{\left|V_{a b, k} V_{b c, k} V_{a c, k}^{*}-B_{k}^{\mathrm{data}}\right|^{2}}{\left|V_{a b, k} V_{b c, k} V_{a c, k}^{*}-B_{k}^{\mathrm{data}}\right|^{2}+\operatorname{Var}\left(B_{k}^{\mathrm{data}}\right)}
\end{gathered}
$$

- Expression similar to Wiener filter
- Weights depend on searched parameters

Building Block Method

- Regularization:
- sparsity, minimize the number of blocks (sharp images)

$$
R_{\text {prior }}(i)=\mu\|i\|_{0}=\mu \operatorname{Card}\left(\left\{j ; i_{j} \neq 0\right\}\right)
$$

- positivity and support constraint easily imposed
- Minimization : Matching pursuit
- iterative reconstruction (linear approximation of the criterion, steepest descent on weight/location gradients)
- basically CLEAN using bispectra...
- Negative blocks and multiple blocks can also be used
- Advantages:
- Rather fast
- Best software for sparse reconstructions
- Problems:
- Most objects are not especially sparse...

BSMEM

BSMEM

- University of Cambridge (Buscher 94, Baron 2008)
- Image model : image pixels (+ 'experimental' wavelet coefficients)
- Likelihood : uses power spectra and bispectra
- Regularization: Maximum entropy
- Minimization method: Trust region method, local quadratic approximation of the criterion

$$
J(\boldsymbol{i}+\delta \boldsymbol{i})=J(\boldsymbol{i})+\delta \boldsymbol{i}^{T} \nabla J+\frac{1}{2} \delta \boldsymbol{i}^{T} \nabla \nabla J \delta \boldsymbol{i}
$$

- Requires transposed transform and diagonal Hessian matrix
- Evaluation of the "trust region" in which this model is valid - Similar to Levenberg algorithm
- One step move to the minimum:

$$
\delta \boldsymbol{i}=-(\nabla \nabla J+\beta \boldsymbol{I})^{-1} \nabla J
$$

BSMEM

- Reconstruction of BC2004 data (Lawson et al. 2004)

BSMEM

- Advantages:
- Speed
- Reconstruction of binaries, because of fast exploration of the posterior
- Automatic estimation of the regularization weight based on reduced chi-squared, or based on evidence (talk tomorrow)
- Problems:
- Lack of regularization choices
- Lack of control on the support of the reconstruction
- Leading to artifacts...
- Falls into local minima
- Cannot do model-fitting simultaneously...

MIRA

MiRA

- University of Lyon (Eric Thiebaut, 2004)
- Image model : image pixels
- Likelihood : uses power spectra, bispectra, differential vis.
- Regularization: most common ones with gradients
- Minimization method: limited memory semi-Newton, with gradient projection onto positive definite domain
- Semi-Newton builds an approximation of the Hessian from the evolution of the gradient, using little memory
- Advantages:
- Speed
- Reconstruction of binaries, fast exploration of the posterior
- Vast choice of priors
- Problems:
- Falls into local minima
- Cannot do model-fitting simultaneously...

MACIM

- MArkov Chain IMager, John Monnier +Mike Ireland (2006)
- Global optimization by stochastic exploration of the posterior probability
- Data : any, easily implemented
- Regularization : any regularizer, including those with no analytic gradients
- Minimization :
- Markov Chain, simulated annealing = analogous physical process of heating and then slowly cooling a substance to obtain a strong crystalline structure (iron, chocolate...)

```
Repeat {
while NOT (minimum criterion at temperature T) {
    Perturb the image (add/move/swap/change pixels)
    Accept this new image with probability
        p=min}[1,\operatorname{exp}(-\Delta\mp@subsup{\chi}{}{2}/2T-\mu\Delta\mp@subsup{R}{\mathrm{ prior }}{})
    } until criterion is minimum for T
    Decrease T according to cooling schedule
} until global minimum reached
```


MACIM - Simulated annealing

- Question
- T = FROZEN

Unreachable here,

Unreachable here,

- T = COLD

MACIM

- Advantages:
- Simulated annealing search for the global minimum
- Has limited model-fitting capabilities
- joint estimation of any parameter possible in theory (ex: the regularization weight)
- Problems:
- Choice of tuning parameters (cooling schedule, acceptance threshold)
- Slower than local 'gradient based' optimization
- Convergence to the global minimum in limited time not guaranteed
- may still fall into local minima as the criterion is heavily multimodal (newer samplers may solve this)
- Initialization is important (e.g. hard to find both components of a binary)

WISARD

WISARD

- ONERA, Meimon et al. (2005 \& 2009)
- Missing phase = visibility phase - closure information
- if N stations, $\mathrm{N}-1$ "differential pistons" parameters per snapshot
- Model : 'explicit' method = image pixels + missing phase parameters
- Data : pseudo-data of complex visibilities are formed
- Visibility moduli + errors derived from powerspectra + errors
- Phases + errors derived from closure phase data + missing phase parameters
- likelihood based on rotated complex visibilities

WISARD - Self calibration

- Alternating minimization scheme similar to self-calibration in radio

Step 1: initialization

Choose a starting image and regularization hyperparameter

Step 2: self-calibration

Find the optimal missing phase parameters for the current image by minimising the likelihood (exhaustive search possible for $N=3$)

Step 3: image reconstruction

Find the optimal image for the current missing phase parameters by minimising the full criterion (likelihood + regularization)

Repeat 2 and 3 till convergence

WISARD

- Regularization: same vast choice as MIRA

Quadratic+Lorentzian prior

L1L2+uniform prior

- Advantages
- useful in weak phase case ($\mathrm{N}<5$)
- Problems
- Orphan powerspectra unused, bispectrum moduli unused
- Quite slow
- Comparison with MIRA shows very little difference
- Self-calibration convergence depends on SNR...

Summary - Algorithmic strategies

- Main difference = flexibility

Imaging Beauty Contest 2006

MIRA, BSMEM, WIZARD on LkHa

- Giovanelli 2008, Baron 2008
- Feature comparison
- same results with the same type of regularization
- More regularization/image model choices = more adaptability

Summary

- No Ultimate Black Box Algorithm ${ }^{\text {TM }}$ yet
- Reconstruction quality determined by user choices
- Current challenges:
- optimal choices of priors and initial image
- Identification of artefacts
- simultaneous model fitting
- optimal reconstruction from multi-frequency datasets
- reconstruction on non-planar surface (spheroids)

