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Interferometric imaging
Main research axes

● New regularizers (e.g. Compressed Sensing)

 
● Simultaneous model fitting

● Reconstruction from multi-frequency datasets

● Reconstruction on non-planar surface (spheroids)
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COMPRESSED

SENSING



Compressed sensing
Performance

Baron et al., 2012
in prep
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● Sparsity: an image is said sparse in a basis     if it can be 
expressed as a small number of non-zero coefficients    in 
this basis. Example: point sources on pixel grid

● For a sparse image, CS supersedes Shannon sampling
● CS theory assumes linear measurement equation

 
● Optimal reconstruction (Candes 2007) of this small number 

of coefficients achieved by          with     solution:

●      regularization on the coefficients, hard to minimize...
●      regularization on the coefficients, give similar solutions 

(Candes 2006) and is convex... 

New regularizers
sparsity and compressed sensing



Building a spot regularizer

● Total variation, successful regularizer (Renard et al. , 2011)

where       is the local spatial gradient
● Better with                 (Chartrand 2007) ?



● For given spot flux F, regularizer should prefer 1 spot to 2 spots (Occam's)
● For given spot flux F, the regularizer should not prefer a specific spot size
● 1 spot of diameter 2D: flux density =                  
● 2 spots of diameter D: flux density =
● For a gradient regularizer, regularization =           x reg(flux density) 

Bad
Scale dependent

Building a spot regularizer

Good
Scale independent



Characteristics of the UD regularizer

● Local correlations taken into account
– constraining disc prior not required any more
– pixels group together, initial image not as important

● but this can prevent image exploration
● Works well on simulated spots
● In MACIM, use the -bm flag to use the UD regularizer    



Compressed Sensing
Wavelets

Undecimated isotropic wavelets
4 scales

CDF 5/3 wavelet decomposition
(JPEG 2000)

4 scales



Compressed sensing
Wavelet super-resolution

uv Truth Convolved to array resolution

BSMEM
pixels

BSWAVE
IUW
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IMAGING

ON SPHEROIDS
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Issues when imaging stellar surfaces

Lam And reconstructions, Parks, GSU

Algol reconstructions
Baron et al., 2012

● Fast movement: data has to 
be split into time chunks 

● Reconstruction of the next 
chunk does not use 
knowledge of previous ones

● Constraining the star 
geometry improves the 
images
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“4D” image reconstruction

● 3D = imaging on spheroids 
● + 1D, time dependency
● (+ 1D, wavelength dependency ?)
● Mixes model-fitting and imaging

– Temporal effects have to be modelled
– Reconstruction engine has to be flexible and allow 

simultaneous imaging/model-fitting, e.g. MACIM
● Uses all the data available + derive geometric/dynamic 

parameters
●               easy to compute if we can generate the image

– but maybe slow process...
● Regularizers have to be adapted to spheroids

– easy for UD regularizer 
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Spheroid parameters

● Pixellation
● Healpix equisurface subdivision of 

the sphere
●          : equipotential surface 

equation (rapid rotators and 
Roche lobes)

● Temporal parameters

- speed  + axis orientation

- differential rot. (hard ! TBD)

- orbital elements

Gorski et al., 2005



Examples

Basic Healpix Healpix + Roche surface

Texturing, Roche back Texturing, Roche side, Gravity Darkening
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Fast 3D rendering: OpenGL
● GPU accerated 3D rendering onto the 2D screen
● 3D rendering + FFT  not as fast as analytic

– but very flexible for discs (Eps Aur), YSOs,...
– easy path for occlusion (binaries) 

● OpenGL manages the star geometry, i.e.  
– surface defined by the Healpix/Roche vertices  
– fast translation/rotation operations based on orbits or 

rotation info
● To each Healpix pixel is associated a temperature (not flux)

– applied as a texture on top of surface mesh 
● Post-processing:

– blending (opacity)
– shaders: LDD (see B. Kloppenborg's SIMTOI)
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Fast parallel computation: OpenCL

● GPUs have hundreds to thousand cores
● Imaging = massively parallel problem

– vector/array operations
– demonstrated with GPAIR (Baron & Kloppenborg, 2010)
– high performance gain vs CPU code (speed-up > 100)

● OpenGL/OpenCL interoperation mode 
– fast computation of Roche Lobe surface
– visibility computation via DFT, NFFT algorithm TBD
–                computations
– physical computations (e.g. for model-fitting)

● surface gravity, Doppler map, etc.
– synergy with Kloppenborg's SIMTOI model-fitting tool
– light curves as a bonus for 3D+time (total flux)



Compressed Sensing on spheroids 
Wavelets

synthetic 

spotted star

4-scale 
decomposition on 

spheric 
undecimated 

isotropic wavelets

● Isotropic 
undecimated 
wavelets, CDF 
5/3, CDF 9/7 on 
sphere

● MRS3D by Starck 
et al., 2010, 
tweaked for this 
code
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MULTI-WAVELENGTH

RECONSTRUCTIONS
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General polychromatic 
image reconstruction

Arcturus with IOTA, Lacour et al. 2008

VLTI/AMBER and CHARA/VEGA
Differential phases/visibilities 
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Self-calibration

Millour et al. 2011, unstable process...



F
ab

ie
n 

B
ar

on
 –

 A
pe

rt
ur

e 
sy

nt
he

si
s 

im
ag

in
g

General polychromatic 
image reconstruction

Thiebaut 2012
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Spectral reconstruction

Thiebaut 2012
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MODEL SELECTION



Model selection

● How do we select regularizers, regularization weights, 
compressed sensing basis ?

● Bayesian model selection: 

● The “evidence” for a model measures its probability

● Integration of posterior probability = difficult numerical problem 
– BSMEM engine
– Nested Sampling (Skilling 2006)
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Application of the evidence framework

log P (D∣M )=0.00±0.12 log P (D∣M )=−2.34±0.45 log P (D∣M )=−15.83±1.36

log P (D∣M )=8.13±0.34 log P (D∣M )=9.63±0.12

BSMEM BSWAVE

Evidence evaluation for model-fitting of a star with a single spot


