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§ 1. It has often been suggested that the light-changes of those
variable stars which are regularly periodic may be due to the exist-
ence of spots on their surfaces, which are hidden or brought into
view as the star rotates about its axis. The same explanation has
been given more plausibly for the variability shown by certain satel-
lites and asteroids, for in this case the only rival hypothesis is that
which ascribes the light-changes to the departure of the body from a
spherical form.

It may therefore be worth while to discuss some results of these
hypotheses, and consider (1) what is the character of the light-
curve produced by the rotation of an arbitrarily spotted body, and
(2) how far it is possible to reason backward from such a light-
curve to the spots which produce it.



How long a spot is visible during each rotation depends on its latitude and on |.
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Comparing light curves for different limb darkening gives
Information about spot latitudes.




Surface Partition

Divide the surface into N latitude bands of equal angular widths. Subdivide each
band into patches such that the number of patches M, in band n is proportional to
the cosine of the latitude, to within the constraint that the number of patches
must be an integer. This yields a partition such that all the patches have nearly

equal areas.




Mathematical Formulation

* Assume each patch is uniformly bright across its face. Let J,;; be the specific

intensity along the outward normal of the it patch in the ji latitude band as
seen though the nt" photometric filter.

 Lett, be the time of the k™" observation through filter n. The observed
Intensity at the photometer at this time is

Ny M,
[ = E E an;ijLnk;ijJn;fj

i=1 j=I
where

€ = solid angle subtended by patch (i,j) at time t,,
Lj = limb darkening of patch (i,]) at time t;,

« \We want to invert the light curve to find the patch intensities, but the problem
IS 1ll-posed.

« Below we use a caret © over a symbol to denote a reconstructed quantity



Input parameters:

* Inclination angle i of rotation axis to line of sight
« Limb darkening model

¢ 5, = ; TSP — spot-to-photosphere intensity ratio for each filter
n;phot

¢ 1, = i POt — ratio of photosphere intensity for filter n to that for filter 1
1;phot

Scaling Patch Intensities for Multi-filter Inversions

* In order to simultaneously invert light curves through multiple filters, we
need to use a single set of patch intensities to generate all the light curves.
« To do so, we use the linear scaling

- Fn A A
Jn:ij = 1 q [(Sn _Sl)Jl;avg+(1 _Sn,)Jl;ij]
— 9]

where we use J1.ayg as a proxy for the photosphere intensity for filter 1.

* Note 1:ha-tjl;ij - ]1;avg _)]n;ij = rn]l;avg and
]1;ij — Sl]l;avg _)]n;ij — rnSnjl;avg-




Regularization
* Objective function to be minimized is

EJ, LA, B)=GJ.D+215(, B)
where the vector | is the set of observed intensities, J is the set of
reconstructed patch intensities for filter 1, A is the smoothing parameter, and

B is the “bias” parameter (described later).

« The goodness-of-fit measure is

2

G(j, I) . ( S Ogl() 8)2 Z i: nk nk

n=1 ” k=1

where Q is the number of filters, o2 is the estimated variance in magnitudes of
the noise for filter n, P, is the number of points in the light curve for filter n,

P is the total number of points in all the filter light curves, and the 1, are the
intensities of the reconstructed light curves implied by .



Regularization

« The prior is that the surface contains dark spots on a uniformly bright
photosphere.

» The penalty function used to enforce this is

N j

M
SA.BY =D Y cij(dij — Jue)’

=1 j=I1
where B is the “bias parameter,” and ¢;; = 1 if J; i < favg, while

A

« |If B> 1, the penalty for a patch being brighter than average is B times larger
than for being dimmer than average by the same amount.

 In this way we bias the distribution of patch intensities so that most are just
slightly brighter than average (the “photosphere’) while a small number are
dimmer than average so as to fit the light curve.



Determination of A
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FiGc. 2.—V light-curve inversions for a pair of circular spots of radius 20° for a polar inclination to the line of sight of 45°. The left-hand image in each pair
is the true surface; the right-hand image is the M LI reconstruction. The ratio of the estimated noise in the light curve expressed in rms magnitudes to the true
noise decreases down each column. On the left-hand side, the values are 1, 0.98, and 0.96; on the right-hand side, the values are 0.94, 0.92, and 0.90.



V-filter inversions for
simulated surfaces




BV-filter inversions for
simulated surfaces




BVRI-filter inversions for
simulated surfaces
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ABSTRACT

We present the results of a study of differential rotation on the K2 IV primary of the RS CVn binary Il Pegasi
(HD 224085) performed by inverting light curves to produce images of the dark starspots on its surface. The
data were obtained in the standard Johnson B and V filter passbands via the Tennessee State University T3 0.4 m
Automated Photometric Telescope from JD 2447115.8086-2455222.6238 (1987 November 162010 January 26).
The observations were subdivided into 79 data sets consisting of pairs of B and V light curves, which were then
inverted using a constrained nonlinear inversion algorithm that makes no a priori assumptions regarding the number
of spots or their shapes. The resulting surface images were then assigned to 24 groups corresponding to time
intervals over which we could observe the evolution of a given group of spots (except for three groups consisting
of single data sets). Of these 24 groups, six showed convincing evidence of differential rotation over time intervals
of several months. For the others, the spot configuration was such that differential rotation was neither exhibited
nor contraindicated. The differential rotation we infer is in the same sense as that on the Sun: lower latitudes have
shorter rotation periods. From plots of the range in longitude spanned by the spotted regions versus time, we obtain
estimates of the differential rotation coefficient k defined as in earlier work by Henry et al. and show that our results
for its value are consistent with the value obtained therein.

Key words: binaries: close — stars: activity — stars: imaging — stars: individual (II Pegasi) — starspots — stars:
variables: general

Online-only material: figure set
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The B and V Light Curves of 1l Pegasi, 1987 Nov 16 — 2010 Jan 26
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B Light Curve for Data Set 3
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-Data Sets3—6
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Fig. 4.— Plots of the span in longitude A¢ of the active regions shown in the inversions in Figure
3] versus the heliocentric MJD of the midpoint of the time spanned by each data set, along with the
least-squares best-fit line. The method used to determine A¢ is detailed in the text. In this figure

and in similar figures which follow it, the slopes of the best fit lines expressed in units of degrees

Group 2: Data Sets 3 — 6, a=45°
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Group 2: Data Sets 3 — 6, a=060°
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Q(#) = Qog(1 — ksin® )

AS)

k — 1
Q@q(:-ﬂn2 01 — sin? 62)

Table 2. Differential Rotation Coefficient, k

AQ (deg d—1) 9 = (0°,90°) 6 = (45°,80°) 9 = (48.2°,71.7°)®

Group =45 i =60 i =45 i=060° i =45 i =60° 1 =45 i=60°

2 0.34 0.19 0.0063  0.0034 0.013  0.0072 0.018  0.0098
3 0.28 0.15 0.0051  0.0027 0.011  0.0058 0.015  0.0079
11b 0.24 0.21 0.0044  0.0039 0.009  0.0084 0.013 0.011
12 0.36 0.31 0.0066  0.0057 0.014 0.012 0.019 0.017
13 0.39 0.29 0.0072  0.0052 0.015 0.011 0.021 0.015
14 0.42 0.42 0.0076  0.0076 0.016 0.016 0.022 0.022
Mean 0.0062  0.0048 0.013 0.010 0.018 0.014

St. Dev. 0.0012  0.0018 0.003 0.004 0.004 0.005

*Values taken from [Siwak et al, (2010).

bData Sets 31-33 excluded.



