High-spectral resolution AMBER imaging of the outer atmosphere of red supergiants

Keiichi Ohnaka Max Planck Institute for Radio Astronomy

Introduction: Massive star evolution

Massive stars (> 8 M_{\odot} stars)

✓ Rare in number, short-lived

However, great impact on their surrounding environment...

- ✓ UV ionizing radiation sources
- ✓ Strong winds, SN explosion
 → Mechanical energy input
- ✓ Chemical enrichment of ISM

Evolution not yet well understood = Mass loss determines the star's final fate

Mass loss in red supergiants

- ✓ Late evolutionary stage of massive stars (> 8 M_{\odot})
- ✓ Significant mass loss ~10⁻⁷--10⁻⁴ M_☉/yr
 - → No theoretical model to explain the mass loss in red supergiants

Introduction: Betelgeuse's inhomogeneous atmosphere

Co-existence of hot plasma and cool gas
→ Hot plasma with a small filling factor embedded in cool gas (Harper & Brown 2001, 2006)

Strong IR molecular lines form in the outer atmosphere
 → High spectral & spatial resolution observations
 → Long-Baseline Spectro-Interferometry

AMBER: near-IR interferometric instrument

Operating at $1.3 - 2.4 \mu m$

Angular resolution = 1 mas (2 μ m)

Spectral resolution = 35, 1500, 12000

✓ Visibility & phase measurement in atomic/molecular lines
 → Information on the object's size and shape in spectral features

✓ Aperture synthesis imaging is also possible if enough *uv* points are sampled.

AMBER observations of Betelgeuse (2009) 1-D aperture synthesis imaging in the CO lines

Observations

- CO first overtone lines
 2.28 2.31 μm
- ✓ Dense, linear *uv* coverage 1st to 5th visibility lobes Spatial resolution = 9.8 mas (λ /B) = 1/4 x stellar size
- 1-D projection image
 "squashed" onto the baseline vector

Baseline on the sky

AMBER 1-D imaging of Betelgeuse: continuum

✓ MiRA package (Thiebaut 2008)

 ✓ Tests with simulated data of spotted uniform disks
 → Determine the appropriate initial models, prior, & regularization

Results: Continuum

 Slight deviation (5%) from a uniform or limb-darkened disk in the continuum

Betelgeuse in the 2.3 μ m continuum: No or only marginal time variation between 2008 and 2009

Time variation is much smaller than the maximum variation predicted by 3-D convection simulation (Chiavassa et al. 2009). \rightarrow 3-D model predicts too pronounced inhomogeneities(?)

AMBER imaging of Betelgeuse: CO lines

Image reconstruction with
 V² + Closure phase is not unique!
 (Fit to the data is equally good.)

AMBER observations of Betelgeuse: 1-D aperture synthesis imaging in the CO lines

AMBER imaging of Betelgeuse: CO lines

Self-calibration with differential phase

NPOI: Schmitt et al. (2009) AMBER: Millour et al. (2011)

- 1) Reconstruct images at all continuum spectral channels from V² and CP
- 2) Compute the phase in the continuum images.Interpolate for line spectral channels
- 3) Phase(lines) =
 Interpolated phase(continuum)
 + Observed differential phase
 → Complex visibility

Fitting the continuum phase

AMBER imaging of Betelgeuse: CO lines

Self-calibration with differential phase

NPOI: Schmitt et al. (2009) AMBER: Millour et al. (2011)

- 1) Reconstruct images at all continuum spectral channels from V² and CP
- 2) Compute the phase in the continuum images.
 Interpolate for line spectral channels
- 3) Phase(lines) =
 Interpolated phase(continuum)
 + Observed differential phase
 → Complex visibility

1-D imaging of Betelgeuse: First aperture synthesis imaging in CO lines

Spectral resolution = 6000

Ohnaka et al. (2011)

1-D imaging of Betelgeuse: First aperture synthesis imaging in CO lines

Spectral resolution = 6000

Movie http://www3.mpifr-bonn.mpg.de/staff/kohnaka/alfori1.html

1-D imaging of Betelgeuse: Spectrum of the CO lines at each spatial position

1-D imaging of Betelgeuse: Spectrum of the CO lines at each spatial position

Movie http://www3.mpifr-bonn.mpg.de/staff/kohnaka/alfori2.html

AMBER 1-D imaging of Betelgeuse in the CO lines

AMBER 1-D imaging of Betelgeuse in the CO lines

Modeling the inhomogeneous velocity field

0—5 km/s

Strong downdraft with 20—30 km/s

Modeling the inhomogeneous velocity field

Origin of the inhomogeneous velocity field

✓ Convection?

 Driven by MHD processes?
 Magnetic field detected ~1 G (Aurière et al. 2010)

✓ Pulsation?

→ But variability amplitude is small $\Delta V = 1 - 1.5$ mag

✓ Clumpy mass loss

Temporally variable, inhomogeneous velocity field → Clumpy mass loss(?)

VLTI / AMBER imaging of the red supergiant Antares

VLTI / AMBER imaging of the red supergiant Antares

Conclusion & Outlook

- ✓ 1-D imaging at high-spatial and high spectral resolution
- Betelgeuse appears different in the blue and red wings
- ✓ Stellar surface gas motions spatially resolved
- Long-term monitoring to follow the dynamics of the outer atmosphere
 E.g., Episodic, strong outward motion?
- ✓ 2-D imaging
 - Antares is better for 2-D imaging with VLTI (southern target)

Thank you for your attention!

Artist's impression of mass loss from Betelgeuse (L. Calçada) ESO Press Release, July 29, 2009