Resolving the Structure of Disks Around Be Stars

Gail Schaefer

The CHARA Array of Georgia State University

Collaborators:

Doug Gies (GSU) John Monnier (U. Michigan) Yamina Touhami (GSU) Xiao Che (U. Michigan)

Be Stars

 Rapidly rotating massive stars that eject gas into a circumstellar disk

Bill Pounds

Review: Porter & Rivinius 2003

- Properties of Be stars
- Interferometric observations of Be stars
 - Geometry and size of Be star disks
 - Multi-wavelength structure of the disks
 - Small scale asymmetries in the light distribution of the disk
 - Long-term campaign to monitor changes in the disk of Be stars

Evidence for Disks Around Be Stars: Infrared Excess

Evidence for Disks Around Be Stars: Infrared Excess

Evidence for Disks Around Be Stars: Hα Emission Line Profiles

Evidence for Disks Around Be Stars: Hα Emission Line Profiles

Time Variability of Hα Emission Lines

- V/R variations
- Variable on timescales of days to decades

Density wave enhancement

Evidence for Disks Around Be Stars: Spatially Resolving the Disk with Long Baseline Interferometry

Geometric Models of Be Star Disks

- Zeta Tau observed in H α emission at NPOI
- Elliptical Gaussian model
- Flattened disk inclined nearly edge-on
- Tycner et al. 2004

Physical Model: Isothermal Disk in Keplerian Rotation

- Geometry and density structure of the disk
- CHARA Classic K-band measurements
- Gies et al. 2007

Kinematic Model of Rotating Disk: High Spectral Resolution

- VLTI/AMBER Bry emission
- Visibilities and differential phase
- Meilland et al. 2012

Kinematic Model of Rotating Disk: High Spectral Resolution

- VLTI/AMBER Bry emission
- Kraus et al. 2012

How Does Disk Size Depend on Wavelength?

How Does Disk Size Depend on Wavelength?

How Does Disk Size Depend on Wavelength?

Multi-wavelength Disk Diameters

Density wave enhancement

- Asymmetry detected in differential phases
- Shift in position of bulge in disk
- GI2T Vakili et al. 1998

- Asymmetry consistent with oscillation pattern created by one-armed spiral in disk
- Visibilities and differential phases VLTI AMBER
- Stefl et al. 2009, Carciofi et al. 2009

The CHARA Array Mount Wilson Observatory

Example uv coverage of Zeta Tau MIRC Observations 2007-2009

Elliptical shape and orientation of Zeta Tau disk

Zeta Tau: Non-zero Closure Phases

Asymmetry in the light distribution of Zeta Tau

Geometric Models of Zeta Tau

- FWHM Major Axis ~ 1.8 mas
- On average, the central star contributes ~ 55% of the light in the H-band (41% in the K-band)
- Change in position angle of the major axis of 10-15°
- Motion of the asymmetry

Zeta Tau: Hα Profile Variability

Pollmann & Rivinius 2008

E. Pollmann 2012

V/R Variation Continued Through Time Space of MIRC Observations

Schaefer et al. 2010

Disk Position Ange vs Hα V/R Phase

Mean position angle: $-58.0^{\circ} \pm 1.4^{\circ}$ Semi-amplitude: $8.1^{\circ} \pm 1.7^{\circ}$ Maximum occurs at $\tau = 0.23 \pm 0.03$ Mean position angle from linear polarization: $-58.1^{\circ} \pm 1.2^{\circ}$ (McDavid 1999; Stefl et al. 2009)

Tilt of disk associated with one-armed spiral density enhancement

MIRC - H-band data from 2011 Sept 3

Gam Cas - Closure Phases

MIRC - H-band data from 2011 Sept 3

Geometric Model of Gam Cas

- Uniform circular disk star
- Elliptical Gaussian disk

Fix stellar diameter: 0.44 mas

Model Parameters: Disk major axis: 1.02 mas Disk minor axis: 0.76 mas Position angle: 204.3° 63% light from disk 37% light from star

Fit to Visibilities: Gam Cas

Small Scale Asymmetries in Light Distribution

- Uniform disk star
- Elliptical Gaussian disk
- Star partially shaded by disk

Can we measure the difference?

Top of star shaded by disk

Closure Phases

Closure Phases

Gam Cas - Closure Phases

MIRC - H-band data from 2011 Sept 3

Image Reconstruction: Gam Cas

Image Reconstruction: Gam Cas

MACIM Image

Reconstruct image while fitting for uniform disk star

MACIM + Model Fitting

- cd ~/Workshop/Software/macim
- Options for model fitting:
 - modelcode_ud.c
 - modelcode_im.c
- cp modelcode_ud.c modelcode.c
- make
- macim datafile.oifits -s 0.1 -w 50 -P p0 p1 -S s0 s1
 - p0, p1: % flux in UD disk, UD diameter
 - step sizes in flux and diameter (set to 0 to fix)

Image Reconstruction: Zeta Tau

Combined data set from 2007 to 2009

MACIM Image

- Fit star as uniform disk
- Use elliptical Gaussian as prior to reconstruct disk

Challenges with Imaging Be Stars

- Goal: describe outward motion of gas and density enhancements through the disk over time
- Boundary between star and disk
 - model fitting: point source or uniform disk star
 - rapidly rotating central star?
- Overall shape and orientation of reconstructed disk is consistent with modeling
- Difficult to reconstruct small asymmetries in diffuse disk emission reliably
 - need good uv-coverage
 - include gaussian prior?
 - regularizer?

The End

Zeta Tau: Disk Precession?

- Disks of Be stars may develop a spiral density wave that precesses prograde with the disk rotation.
- Theoretical work by Ogilvie (2008) and Oktariani & Okazaki (2009) suggest that there is significant vertical motion associated with the spiral arm that might assume the form of a tilted disk. If so, perhaps this tilt precesses with the one-armed oscillation mode.
- Martin et al. (2011) transitions between shell and Be stars may suggest a warped, precessing disk. Torque from binary companion may cause oscillations in disk mass and inclination.
- Previous evidence for precession in Be star disks
 - Hummel 1998 (Gam Cas, 59 Cyg) emission line widths
 - Hirata 2007 (Pleione) intrinsic polarization, H α emission

What About the Polarization angle?

- Intrinsic polarization angle has remained remarkably stable over the last decade (McDavid 1999; Stefl et al. 2009)
- No evidence of changes as large as those seen in the interferometric data

Is There a Resolution?

- Polarization probes scattering radiation from the innermost part of the disk where it is probably co-aligned with stellar equator (source of ejected material)
- Tilt associated with larger scale structure of spiral oscillation in disk measured by interferometry

Michigan Infrared Combiner: MIRC

- Designed for imaging
 - Combines light from 6 telescopes simultaneously
 - 15 visibilities and 20 closure phases
- 8 spectral channels across the H- band ($\lambda = 1.6 \ \mu m$)

MIRC IRCam				
<u>File</u> <u>P</u> references <u>H</u> elp				
Reset BG 🛛 Take B	3G Use BG Start exposure	Stop exposure Delay lines contro	rol GDT control	
Quit				
rows cols 2 16 252 0 row off col off 0 4 2 NReads 0 5 Number of frames 0 0 1000 Frames per reset 0 0 1000 image directory 0 0 14 Coherent Coadds: 0 0 15 Save Number: 0 0 0 Update DAQ Parameters 0 0 Config Camera (1234) Set Dispic Pias (4, PIAS) 0	2D image cross section Row # 4 cmin cmax 0 252 quadrant mode Q3 Q4 Q1 Q2 cower spectrum os cross section row # 0 col # 0 START 0	 2 4 4	2D image cross section Row # 4 cmin cmax 0 252 quadrant mode Q3 Q4 Q1 Q2 bower spectrum crow # 0 col # 0 20 40 6	
Kill Server	☆ ⊙ 🗢 🕂	• 😭 👼 🗃	☆ 🛇 🗢 🕂 😭	ē :

Stellar Diameter = 0.527 mas

Agrees with SED diameter of 0.52 mas (Y. Touhami)

2011 Aug 10-12

Disk Contribution?

