IOE 481
HOSPITAL SERVICES PRACTICUM

ANALYSIS OF THE SUPPLEMENTAL DELIVERY PROCESS
OF THE MATERIEL SERVICES DEPARTMENT

CLIENT:
JOHN GIALANELLA
DIRECTOR - MATERIEL SERVICES

COORDINATOR:
RICHARD J. COFFEY, Ph.D.
DIRECTOR - PROGRAM AND OPERATIONS ANALYSIS

CONSULTANTS:
KERRI CHRISTIAN
ARMEKA SULLIVAN
ORLANDO VALREE

APRIL 23, 1995
# TABLE OF CONTENTS

I. Executive Summary  
II. Introduction and Background  
III. Approach and Methodology  
IV. Analysis of the Current Situation  
V. Findings and Conclusions  
VI. Recommendations  
VII. Action Plan  
VIII. Appendix
I. EXECUTIVE SUMMARY

Supplemental Delivery Services delivers, on average, about 1,200 items per week. However, Materiel Services is having trouble meeting its delivery goals. Due to the need for timely deliveries in the healthcare business, it is important for Materiel Services to accurately meet its delivery times. In order to improve delivery timeliness, Materiel Services has asked this project team to analyze the process performance and make recommendations to improve their overall process. Our goal for this project was twofold: 1) determine whether or not the process is in control and 2) if the process is in control, determine whether the expected delivery times of sixty minutes for routine deliveries and fifteen minutes for stat deliveries are reasonable.

After computing turnaround times for the dates between January 1, 1995 and March 18, 1995, and plotting the turnaround times on X-bar control charts (Exhibits 1-6), the project team concluded the following: the supplemental delivery process for routine deliveries is in control; the stat deliveries for the month of January were out of control; and the stat deliveries for February and March were in control. After measuring the average times for different parts of the process (Table 4, e.g. time the order sits at the printer, the time the order waits in the bin), the project team found that the average turnaround time for regular deliveries should be 21:18.82 ± 10:35.12. With respect to stat deliveries, the average turnaround time should be 10:42.48 ± 4:22.14. In both cases, the turnaround time goals could be met. Therefore, the project team also concludes that the turnaround time goals are reasonable.
Based on the project team's findings and conclusions, the following recommendations have been made to assist the Materiel Services Department in meeting its turnaround time goals consistently:

- Place clocks on the stockkeepers' clipboards to reduce the amount of noncompliant data. Currently, approximately 40% of the total data is noncompliant. By attaching the clocks to the clipboards, workers will be constantly reminded of the time be more inclined to record all correct times.

- Implement a reward system that will recognize workers, promote their efficiency and motivation, and raise worker morale. For example, an Employee of the Month program can be started. For the employee with a high level of compliant data, motivation, efficiency, etc., he/she can be rewarded with a free lunch and/or certificate. His/her name can also be posted in the hospital newsletter or on a "recognition wall" in the Materiel Services Department. When people feel as though they are part of a team and are being recognized for their work, they tend to perform at a higher level.

- Implement daily or weekly briefings, which serve as informational meetings that begin at the beginning of each shift. The briefings should be headed by the shift supervisor or an appointed team leader. These meetings should be an opportunity for goals, information, feedback, etc., to be communicated between management and workers.

- Continue Supplemental Run Tracking Report. Employees should log all deliveries that are made to units with sufficient stock. The reports should be reviewed monthly to identify any department that continues to place orders, regardless of par level. Once a unit has been identified, they should be made aware of the problem and given an overview of the correct order procedure.

- Designate a centralized person in each unit who is responsible for order requests (e.g. desk clerk) and should also be available to receive order requests.
II. INTRODUCTION AND BACKGROUND

The purpose of this project was to evaluate the supplemental delivery process in the Materiel Service Department at the University of Michigan Hospital. Our goal for this project was twofold: 1) determine whether or not the process is in control and 2) if the process is in control, determine whether the expected delivery times of sixty minutes for routine deliveries and fifteen minutes for stat deliveries are reasonable.

Currently, the job of Supplemental Delivery Services is to provide supplemental supplies to various facilities within and outside University Hospital. Materiel Services delivers three types of supplies: 1) Central Sterile Supplies; 2) Medical\Surgical Supplies; and 3) Linens. These items are typically delivered by either using the pneumatic tube system or routine delivery methods. Supplemental Delivery Services delivers, on average, about 1,200 items per week. However, Materiel Services is having trouble meeting its delivery goals. Due to the need for timely deliveries in the healthcare business, it is important for Materiel Services to accurately meet its delivery times. In order to improve delivery timeliness, Materiel Services has asked this project team to analyze the process performance and make recommendations to improve their overall process.

III. APPROACH AND METHODOLOGY

The project team began by first observing the supplemental delivery process. The observation period lasted the duration of the project. Since most of the deliveries are made during the day and evening shifts, only
these two shifts were observed. Each team member investigated how order requests are taken, filled, and delivered. During the observation period, informal interviews were conducted with stockkeepers, dispatchers, shift supervisors, and inventory control employees to obtain feedback on the current situation and any problems that surfaced.

After a complete investigation, a flowchart of the process (Figure 1, Appendix) was prepared. In accordance with the flowchart, between the dates of February 5, 1995 and April 14, 1995, times were randomly taken to establish average times for various parts of the process (e.g. walking to a particular destination, filling an order, waiting on the elevator). In addition, a study simulating a stat delivery to Mott Childrens’ Hospital was conducted. Mott was chosen as the particular destination because it is one of the farthest delivery locations from the Materiel Services Department. In each trial of the experiment, the stockkeeper picked five items and delivered them to the sixth floor of Mott Childrens’ Hospital.

The next step involved obtaining data from the Senior Supplemental Data Analyst. The data included information from January 1, 1995 to March 18, 1995. In order to evaluate process turnaround times, only compliant data could be used. The noncompliant data, which accounted for 40% of the total amount of data, did not have values recorded for request generated and order delivery times. Therefore, turnaround times could not be determined from this data. Moreover, the project team analyzed only the routine deliveries. Since the turnaround times for the other delivery modes (e.g. tube) are defined as the time from the generation of the request to the actual time that the worker delivers the order, the team members decided that there was no need to analyze these other delivery methods. After viewing the data for these other delivery modes, our hypothesis was
confirmed; the turnaround times for these methods were in control. Thus, by analyzing the data for the compliant, routine deliveries, the project team was able to construct X-bar control charts of the Supplemental Delivery Service turnaround times, as well as attain information about the areas who frequently made supplemental order requests.

By further analyzing the control charts, average wait times, etc., the project team was able to determine the following: 1) whether the supplemental delivery process was in or out of control; and 2) whether the turnaround time expectations for stat and regular deliveries were reasonable.

The following section of this paper will explain the data collection more thoroughly.

IV. ANALYSIS OF THE CURRENT SITUATION

Currently, Materiel Services Supplemental Delivery processes about 1,100 routine deliveries per month. This number includes only compliant data on stats and regular deliveries. Due to the large volume of regular and stat supplemental requests coming into Materiel Services, it is important that each order is delivered on time to each of their customers. In order to ensure that this occurs, this project team investigated the current supplemental delivery process used in the Materiel Services Supplemental Deliveries Department to find the actual cause of the problem.

Using only compliant data obtained from the QIC database system, the project team generated a table which displays the average number of stat and regular deliveries per month. Based upon this information, found in Table 1, the project team determined that Materiel Services has an
average monthly turnaround time for regular deliveries of 42 minutes with a standard deviation of ± 31 minutes and an average turnaround time for stat orders of about 18 minutes with a standard deviation of ± 12 minutes.

Table 1. Average TAT by Month

<table>
<thead>
<tr>
<th>Month</th>
<th>Regular Average</th>
<th>Regular Std. Dev.</th>
<th>Stat Average</th>
<th>Stat Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>44</td>
<td>39.45</td>
<td>18</td>
<td>10.18</td>
</tr>
<tr>
<td>February</td>
<td>42</td>
<td>29.68</td>
<td>18</td>
<td>12.55</td>
</tr>
<tr>
<td>March</td>
<td>41</td>
<td>24.52</td>
<td>19</td>
<td>15.95</td>
</tr>
<tr>
<td>Averages</td>
<td>42.3</td>
<td>31.2</td>
<td>18.3</td>
<td>12.9</td>
</tr>
</tbody>
</table>

This shows that currently, the average turnaround time for stat orders are 3 minutes greater than the turnaround goal of 15 minutes.

Also using past delivery data, the project team calculated the percentage of delivery times which are greater than the turnaround goals set by Materiel Services Supplemental Delivery. Based upon the information displayed in Table 2, the project team discovered that about 57% of the stat orders have a turnaround time greater than 15 minutes. Yet, only about 16% of the regular orders have a turnaround time more than the 60 minute goal.
Table 2. Number of Orders per Month

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of Orders</th>
<th>No. &gt;TAT Goal</th>
<th>% &gt; TAT Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Regular Stat</td>
<td>Regular Stat</td>
<td>Regular Stat</td>
</tr>
<tr>
<td>January</td>
<td>1207 112</td>
<td>230 57</td>
<td>19.1 50.9</td>
</tr>
<tr>
<td>February</td>
<td>1122 91</td>
<td>197 44</td>
<td>17.6 48.4</td>
</tr>
<tr>
<td>March</td>
<td>765 75</td>
<td>124 43</td>
<td>16.2 57.3</td>
</tr>
</tbody>
</table>

Due to the number of stat deliveries which had turnaround times greater than the 15 minute goal, the project team decided to focus on determining the root cause for the amount of late stat orders. In order to determine the root cause of this problem, the team members took measurements on the amount of time needed to walk from the Supplemental Delivery area to several key areas in the hospital. These delivery areas included Taubman Center, MOTT/MCHC, University Hospital (East and West). Table 3 gives the expected delivery times by various destinations.

Table 3. Average Delivery Times By Destination

<table>
<thead>
<tr>
<th>Destination</th>
<th>Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Med Inn</td>
<td>6:02.1</td>
</tr>
<tr>
<td>Taubman</td>
<td>5:48.0</td>
</tr>
<tr>
<td>Motts/MCHC</td>
<td>5:44.1</td>
</tr>
<tr>
<td>UH/West</td>
<td>3:13.5</td>
</tr>
<tr>
<td>UH/East</td>
<td>3:06.8</td>
</tr>
</tbody>
</table>
Our investigation found that the longest average travel time was to Med Inn (a time of 6 minutes and 2 seconds.) This leaves about 9 minutes to pick the items for a stat delivery and 54 minutes to pick the items for a regular delivery. The smallest travel time was to the University of Michigan Hospital which was 3 minutes and 13 seconds for the West wing and 3 minutes and 6 seconds for the East wing.

However, in order to accurately gage the actual delivery time needed to deliver an item, the project team had to find the time for the total process based upon the average times of each part of the process. The project team took into account the following: the amount of time that an order sits at the printer before being placed into the bin; the amount of time the order sits in the bin before it is taken by a stockkeeper; the time to pick an order; the time to stamp the order; and the time to walk to the delivery destination.

Figure 1 is a flowchart of the supplemental delivery process. Each step of the process has an average time associated with it, which allows the project team to see the average process times for each step. For instance, during a regular delivery the average time that a request sits at the printer is 7 minutes and 23 seconds. Yet, a stat order sits at the printer about 0:08 seconds. In regular deliveries the amount of time that a request sits at the printer could be a contributing factor to late regular orders. Yet, the actual time to pick both regular and stat supplements is less than 2 minutes. Placing the average times associated with each aspect of the delivery process helps to clarify areas in the process which may be the cause of turnaround times that are greater than the goal. The project team then used the average delivery times of all the delivery destinations which are listed in Table 3. This average, which was 4 minutes and 45 seconds, was
used as a delivery time for both regular and stat deliveries and can be seen in Table 4.

Table 4. Average Observed Process Time

<table>
<thead>
<tr>
<th></th>
<th>Regular</th>
<th></th>
<th>Stat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average</td>
<td>Std.Dev.</td>
<td>Average</td>
<td>Std. Dev.</td>
</tr>
<tr>
<td>Time @ printer</td>
<td>7:23.80</td>
<td>5:22.50</td>
<td>0:08.90</td>
<td>0:03.50</td>
</tr>
<tr>
<td>Time in bin</td>
<td>6:54.20</td>
<td>5:39.26</td>
<td>4:07.30</td>
<td>2:06.40</td>
</tr>
<tr>
<td>Time to pick</td>
<td>1:54.30</td>
<td>1:12.00</td>
<td>1:26.00</td>
<td>0:21.12</td>
</tr>
<tr>
<td>Time to stamp</td>
<td>0:21.40</td>
<td>0:05.22</td>
<td>0:15.20</td>
<td>0:03.12</td>
</tr>
<tr>
<td>Time to walk</td>
<td>4:45.12</td>
<td>1:48.00</td>
<td>4:45.12</td>
<td>1:48.00</td>
</tr>
<tr>
<td>Total</td>
<td>21:18.82</td>
<td>10:35.12</td>
<td>10:42.48</td>
<td>4:22.14</td>
</tr>
</tbody>
</table>

Even taking into account the time that an order waits at the printer and sits in the bin, regular orders can be delivered in about 21 minutes with a standard deviation of ± 10 minutes and Stats in a little over 10 minutes with a standard deviation of ± 4 minutes. If one added the standard deviation to the average delivery time, the turnaround time would be approximately 31 minutes for regular deliveries and approximately 15 minutes for stat deliveries. These numbers are much lower than the current operating turnaround times of 42 minutes for regular and 18 minutes for stat deliveries.

In our initial meetings with the former Assistant Director and former Manager of Materiel Services, they expressed concern about changing the 15 minute stat delivery time to Mott Hospital because it was contained some of the farthest units. For this reason, this project team looked at past data and found that about 85% of stat deliveries made to Mott Hospital were greater than the 15 minute TAT goal. In order to determine
if there should be a separate delivery time for Mott, the project team made several simulation deliveries to the seventh floor of Mott Hospital. The simulation study included the time at printer, the time waiting in the bin as well as the time to pick the order and deliver it. Based upon the data obtained from the simulation study, which can be found in Table 4, we found that the average time needed to travel to Mott was about 8 minutes. This is 7 minutes under the 15 minute turnaround goal.

Table 5. Simulated Trip To Mott Hospital

<table>
<thead>
<tr>
<th>Trip</th>
<th>Time (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10:08.53</td>
</tr>
<tr>
<td>2</td>
<td>7:44.06</td>
</tr>
<tr>
<td>3</td>
<td>8:32.05</td>
</tr>
<tr>
<td>4</td>
<td>6:38.04</td>
</tr>
<tr>
<td>Average</td>
<td>8:06.03</td>
</tr>
</tbody>
</table>

Another aspect of our investigation included observations of both the morning and afternoon shifts. The project team wanted to see if there were any variances in the way that these two shifts were run. Our observations found that both shifts operated in the same manner except for a few minor differences in how stats are handled. The project team found that on the morning shift, if a stat comes through and there is no one there to pick it, the supervisor is paged and he either finds someone to deliver it or he picks it himself. On the afternoon shift, the project team observed five instances where stat orders would sometimes sit in the bin almost 5-10 minutes before someone came by to pick it.
As part of our investigation the project team interviewed several stockkeepers that worked in the Materiel Service department. The project team discovered that some workers' attitudes towards their jobs affected the way they handled both stat and regular orders. While speaking with workers on the afternoon shift, they expressed concern about certain "stat" orders not necessarily requiring stat attention. In many cases, workers felt there was no need to rush these types of orders because they perceived them as being "false alarms". This attitude may be a contributing factor to the amount of late orders delivered by Materiel Services Supplemental Department. Also workers expressed that when delivering orders they did not follow standard procedures. For example, many workers said that since they had an hour to deliver a regular order they would not pick the order until about 20 minutes before it was due. This could lead to workers having an excessive amount of orders needing to be delivered within the 60 minute time limit.

This project team also observed that there was a great deal of noncompliant data due to workers forgetting to time stamp pick or write down delivery completion times. As discussed in the previous section, this caused about 40% of the data received to be noncompliant.

V. FINDINGS AND CONCLUSIONS

After careful observation and analysis, the project team concluded the following: the supplemental delivery process for routine deliveries is in control; the stat deliveries for the month of January were out of control; and the stat deliveries for February and March were in control. As shown on
the X-bar control charts (Exhibits 1-6, Appendix), there are points that lie outside of the upper control limits for both stat and routine deliveries during the period from January 1, 1995 to March 18, 1995. However, the extreme outliers on the routine X-bar control charts (Exhibits 1-3) can be attributed to assignable or special causes (e.g. stockouts, extremely large orders). Moreover, the percent of outliers as compared to the total amount of data analyzed was .75%, 1.78%, and 1.57% for January, February, and March respectively. Such small percentages are insignificant when determining if the process is in or out of control.

The outliers on the January stat X-bar control chart (Exhibit 4), however, show a process that is out of control. Patterns or trends of thirteen outliers exist during this month and account for 11.61% of the total data sample. Exhibit 5, which shows the control chart for February contains only two outliers, which are attributed to special causes. The two outliers account for only 2.19% of the total sample. Moreover, these extreme outliers are not part of a trend or pattern, therefore, February stat deliveries appear to be in control. With respect to March stat deliveries (Exhibit 6), two outliers are present, which represents 2.67% of all the data for that month. Once again, the two outliers are certainly due to assignable causes, and are not part of a trend. Thus, the March stat deliveries are considered in control.

The project team also concluded that the turnaround time goals for the routine and stat deliveries are reasonable, and therefore, should not be altered. After timing the different parts of the delivery process and performing a simulation study, the project team found that all deliveries could be made within the specified turnaround time goal limits. As shown in Table 4, the project team found that the average turnaround time for
regular deliveries should be 21:18 ± 10:35. With respect to stat deliveries, the average turnaround time should be 10:42 ± 4:22. In both cases, the turnaround time goals could be met. Therefore, in the worst case scenario, the regular deliveries should be about 32 minutes and the stat deliveries should be approximately 15 minutes. Justification for this conclusion is also found in the results from the Mott simulation found in Table 5. The table shows that the average turnaround time for a trip to Mott Childrens’ Hospital is 8:06.

However, this conclusion is based on the assumption that the process is performing normally. The project team identified several factors that can affect the supplemental delivery process and the corresponding turnaround times. These factors include the following: 1) stockouts; 2) lack of worker motivation and efficiency (e.g. resulting in orders sitting in the bins or at the printers; 3) absenteeism; 4) staffing level; 5) incorrect picks; 6) large, complex orders; or 7) insufficient PAR System.

VI. RECOMMENDATIONS

Based on the project team’s findings and conclusions, the following recommendations have been made to assist the Materiel Services Department in meeting its turnaround time goals consistently:

• Place digital clocks on the stockkeepers’ clipboards to reduce the amount of noncompliant data. Currently, approximately 40% of the total data is noncompliant. By attaching the clocks to the clipboards, workers will be constantly reminded of the time and be more inclined to record all correct times.
• Implement a reward system that will recognize workers, promote their efficiency and motivation, and raise worker morale. For example, an
Employee of the Month program can be started. For the employee with a high level of compliant data, motivation, efficiency, etc., he/she can be rewarded with a free lunch and/or certificate. His/her name can also be posted in the hospital newsletter or on a “recognition wall” in the Materiel Services Department. When people feel as though they are part of a team and are being recognized for their work, they tend to perform at a higher level.

- Implement daily or weekly briefings, which serve as informational meetings that begin at the beginning of each shift. The briefings should be headed by the shift supervisor or an appointed team leader. These meetings should be an opportunity for goals, information, feedback, etc., to be communicated between management and workers.

- Continue Supplemental Run Tracking Report (Table 8, Appendix). Employees should log all deliveries that are made to units with sufficient stock. The reports should be reviewed monthly to identify any department that continues to place orders, regardless of par level. Once a unit has been identified, they should be made aware of the problem and given an overview of the correct order procedure. For example, Table 9 of the Appendix shows areas of the Medical Center that placed frequent orders resulting in turnaround times greater than the expected goals.

- Designate a centralized person in each unit who is responsible for order requests (e.g. desk clerk) and should also be available to receive order requests.

VII. ACTION PLAN

The project team feels that the following action plan should be implemented:

May 1: Place an order for digital clocks to help reduce the incomplete data. Implement upon receipt of the digital clocks with the authorization of John Gialanella.
May 1: Supervisors should begin daily/weekly briefings to discuss findings and changes presented by project team.

May 1: A letter, formulated with the authorization of John Gialanella, should be sent to the units and clinics requesting a designated centralized person to make and receive orders delivered.

July 1: Implement a reward system. This day was chosen because it begins a six month period which concludes the year. This will allow ease of keeping track of employees' frequency of merit performance. Decisions on types of rewards should be made jointly by supervisors and John Gialanella.

These recommendations for action should be maintained throughout the duration of the process and viewed as forms of continuous improvement.
VIII. APPENDIX
Figure 1. Flowchart with Average Wait Times

**Supplement Run Procedure**

**Regular Delivery**

- 7:23.8: Supplement is printed
- 6:54.2: Pick stock for supplement
- 1:54.3: Time stamp supplement, remove green label bar copy and place in tote
- 0:21.4: Is supplement for inpatient unit?
  - Yes: Take to unit
  - No: Is clerk available to sign?
    - Yes: Go to clerk for signature and time
    - No: If no one is available to sign, place NC and current time

**Stat Delivery**

- 0:08.9: Supplement is printed
- 4:07.3: Pick stock for supplement
- 1:26.0: Tube supplement to appropriate location
- 0:15.2: Take to designated delivery area
- 7:23.8: Look for someone to sign form and wait time
- 1:54.3: Time stamp supplement form in proper slot
- 0:21.4: Place supplement form in proper slot

*Orders Wait in Bin*
EXHIBIT 1. JANUARY REGULAR DELIVERIES

N = 1207

UCL = 162.7
CL = 44
LCL = 0
EXHIBIT 2. FEBRUARY REGULAR DELIVERIES

N = 1122

UCL = 131.2
CL = 42.0
LCL = 0

TURNAROUND TIME (MINUTES)

DELIVERY NUMBER
EXHIBIT 3. MARCH REGULAR DELIVERIES

N=765
UCL=115.0
CL=41.0
LCL=0

TURNAROUND TIME (MINUTES)

DELIVERY NUMBER
EXHIBIT 4. JANUARY STAT DELIVERIES

TURNAROUND TIME (MINUTES)

DELIVERY NUMBER

N = 112
UCL = 28
CL = 18
LCL = 0
EXHIBIT 5. FEBRUARY STAT DELIVERIES

N = 91

UCL = 56.1

CL = 18.0

LCL = 0

DeliVery Number

80 70 60 50 40 30 20 10 0

TURNAROUND TIME (MINUTES)
EXHIBIT 6. MARCH STAT DELIVERIES

TURNAROUND TIME (MINUTES)

DELIVERY NUMBER

N=75

UCL=67.3

CL=19.0

LCL=0
<table>
<thead>
<tr>
<th>DATE</th>
<th>SHIFT</th>
<th>UNIT</th>
<th>STOCK#</th>
<th>QTY (on hand)</th>
<th>STAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/21/95</td>
<td>DAYS</td>
<td>PED B.C.</td>
<td>2044</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>3/21/95</td>
<td>DAYS</td>
<td>4 DN</td>
<td>1796</td>
<td>2 BOXES</td>
<td></td>
</tr>
<tr>
<td>3/21/95</td>
<td>DAYS</td>
<td>4 DN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/29/95</td>
<td>AFTN</td>
<td>POD B/S - MCHC</td>
<td>8002</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>3/29/95</td>
<td>AFTN</td>
<td>POD B/S - MCHC</td>
<td>2176</td>
<td>2 BOXES</td>
<td></td>
</tr>
<tr>
<td>3/29/95</td>
<td>AFTN</td>
<td>5D</td>
<td>5700</td>
<td>8 CASES</td>
<td></td>
</tr>
<tr>
<td>3/30/95</td>
<td>AFTN</td>
<td>5 EAST MOD CARE</td>
<td>1840</td>
<td>gry tote full</td>
<td></td>
</tr>
<tr>
<td>3/31/95</td>
<td>AFTN</td>
<td>HOLDEN</td>
<td>2118</td>
<td>20 EA.</td>
<td></td>
</tr>
<tr>
<td>3/31/95</td>
<td>AFTN</td>
<td>4 DS</td>
<td>1695</td>
<td>30 EA.</td>
<td></td>
</tr>
<tr>
<td>4/3/95</td>
<td>AFTN</td>
<td>7E MOTT</td>
<td>151715</td>
<td>13 EA.</td>
<td>2 EA.</td>
</tr>
<tr>
<td>4/5/95</td>
<td>AFTN</td>
<td>7B</td>
<td>2082</td>
<td>bin full to cap</td>
<td></td>
</tr>
<tr>
<td>4/6/95</td>
<td>AFTN</td>
<td>7E MOTT</td>
<td>419</td>
<td>15 PK</td>
<td>1 PK</td>
</tr>
<tr>
<td>4/6/95</td>
<td>AFTN</td>
<td>7E MOTT</td>
<td>401</td>
<td>15 PK</td>
<td>1 PK</td>
</tr>
<tr>
<td>4/6/95</td>
<td>AFTN</td>
<td>6D SOUTH</td>
<td>304</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4/6/95</td>
<td>AFTN</td>
<td>8B EAST</td>
<td>1235</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4/6/95</td>
<td>AFTN</td>
<td>7B</td>
<td>4485</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4/7/95</td>
<td>DAYS</td>
<td>5D SOUTH</td>
<td>2575</td>
<td>400</td>
<td></td>
</tr>
</tbody>
</table>