
Physics , General Relativity
Homework 

Due Wednesday, th September 

Jacob Lewis Bourjaily

Problem 1
a) We are to use the spacetime diagram of an observer O to describe an ‘experiment’ specified by the

problem 1.5 in Schutz’ text.

We have shown the spacetime diagram in Figure 1 below.

t

x

Figure 1. A spacetime diagram representing the experiment which was required to be
described in Problem 1.a.

b) The experimenter observes that the two particles arrive back at the same point in spacetime after
leaving from equidistant sources. The experimenter argues that this implies that they were released
‘simultaneously;’ comment.

In his frame, his reasoning is just, and implies that his t-coordinates of the two events
have the same value. However, there is no absolute simultaneity in spacetime, so a
different observer would be free to say that in her frame, the two events were not
simultaneous.

c) A second observer O moves with speed v = 3c/4 in the negative x-direction relative to O. We are
asked to draw the corresponding spacetime diagram of the experiment in this frame and comment on
simultaneity.

Calculating the transformation by hand (so the image is accurate), the experiment ob-
served in frame O is shown in Figure 2. Notice that observer O does not see the two
emission events as occurring simultaneously.

t

x

Figure 2. A spacetime diagram representing the experiment in two different frames.
The worldlines in blue represent those recorded by observer O and those in green rep-
resent the event as recorded by an observer in frame O. Notice that there is obvious
‘length contraction’ in the negative x-direction and time dilation as well.
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2 JACOB LEWIS BOURJAILY

d) We are to show that the invariant interval between the two emission events is invariant.

We can proceed directly. It is necessary to know that in frame O the events have
coordinates p1 = (5/2,−2) and p2 = (5/2, 2) while in frame O they have coordinates
p1 = γ(1,−1/8) and p2 = γ(4, 31/8) where γ2 = 16

7 .

∆s2 = (p1 − p2)2 = 16;

∆s2 = (p1 − p2)
2 = γ2 (−9 + 16) = 16.

We see that the invariant interval is indeed invariant in this pointless example.

Problem 2.
a) We are to show that rapidity is additive upon successive boosts in the same direction.

We may as well introduce the notation used in the problem: let v = tanh α and w =
tanh β; this allows us to write γ = 1√

1−tanh2 α
= cosh α and vγ = sinh α, and similar

expressions apply for β. We see that using this language, the boost transformations
are realized by the matrices1(

γ −vγ
−vγ γ

)
7→

(
cosh α − sinh a
− sinhα cosh α

)
, (a.1)

and similarly for the boost with velocity w. Two successive boosts are then composed
by2:(

cosh β − sinhβ
− sinh β coshβ

)(
coshα − sinhα
− sinhα cosh α

)
=

(
coshα cosh β + sinh α sinhβ − sinhα cosh β − cosh α sinhβ
− sinhα cosh β − cosh α sinhβ cosh α coshβ + sinh α sinhβ

)

=
(

cosh(α + β) − sinh(α + β)
− sinh(α + β) cosh(α + β)

)

This matrix is itself a boost matrix, now parameterized by a rapidity parameter
(α + β). Therefore, successive boosts are additive for rapidity.

‘óπερ ’έδει δε�ιξαι

b) Consider a star which observes a second star receding at speed 9c/10; this star measures a third
moving in the same direction, receding with the same relative speed; this build up continues consecu-
tively N times. What is the velocity of the N th star relative to the first? Give the explicit result for all N .

From the additivity of the rapidity, we see immediately that η′ = Nη where η =
arctanh(9/10) and η′ is the rapidity of the resulting velocity. That is η′ = arctanh(β)
where β is the recession velocity of the N th star relative to the first.

Recall a nice identity easily obtainable from the canonical definitions of tanh(x):

arctanh(x) =
1
2

log
(

1 + x

1− x

)
. (a.2)

Therefore, we have that

log
(

1 + β

1− β

)
= N log

(
1 + 9

10

1− 9
10

)
,

= log
(
19N

)
,

∴ 1 + β

1− β
= 19N ,

∴ β =
19N − 1
1 + 19N

. (a.3)

‘óπερ ’έδει πoι�ησαι

1Because we are considering successive boosts in one direction, the problem really lives in 1 + 1-dimensions and we can
make life easier with only 2× 2 matrices.

2We make use of some obvious identities in hyperbolic geometry.
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Problem 3.
a) Consider a boost in the x-direction with speed vA = tanh α followed by a boost in the y-direction

with speed vB = tanh β. We are to show that the resulting Lorentz transformation can be written as a
pure rotation followed by a pure boost and determine the rotation and boost.

This is a 2 + 1-dimensional problem—the entire problem involves only the SO(2, 1)
subgroup of the Lorentz group. Now, although there must certainly be easy ways of
solving this problem without setting up a system of equations and using trigonometric
identities, we will stick with the obvious answer/easy math route—indeed, the algebra
is not that daunting and the equations are easily solved.

The brute-force technique involves writing out the general matrices for both operations
and (consistently) matching terms. The two successive boosts result in


coshβ 0 − sinhβ

0 1 0
− sinhβ 0 cosh β







cosh α − sinhβ 0
− sinhα coshβ 0

0 0 1


 =




cosh α cosh β − sinh α cosh β − sinhβ
− sinh α cosh α 0

− cosh α sinhβ sinh α sinh β cosh β




(a.4)
And a rotation about ẑ through the angle θ followed by a boost in the (cos λ, sinλ)-

direction with rapidity η is given by3




cosh η − sinh η cosλ − sinh η sin λ
− sinh η cos λ 1 + cos2 λ(cosh η − 1) cos λ sin λ(cosh η − 1)
− sinh η sinλ cosλ sin λ(cosh η − 1) 1 + sin2 λ(cosh η − 1)







1 0 0
0 cos θ − sin θ
0 sin θ cos θ




=




cosh η − sinh η (cos λ cos θ + sin λ sin θ) − sinh η (sin λ cos θ − cosλ sin θ)
− sinh η cosλ cos θ + (cosh η − 1)(cos2 λ cos θ + cosλ sin λ sin θ) − sin θ + (cosh η − 1)(cos λ sinλ cos θ − cos2 λ sin θ)
− sinh η sin λ sin θ + (cosh η − 1)(sin2 λ sin θ + cos λ sin λ cos θ) cos θ + (cosh η − 1)(sin2 λ cos θ − cos λ sin λ sin θ)




The system is over-constrained, and it is not hard to find the solutions. For example,
the (00)-entry in both transformation matrices must match,

∴ cosh η = coshα cosh α. (a.5)

Looking at the (10) and (20) entries in each box, we see that

sinh η cosλ = sinh α;
sin η sin λ = cosh α sinhβ;

which together imply

∴ tan λ =
sinhβ

tanh α
. (a.6)

Lastly, we must find θ; this can be achieved via the equation matching for the (12)
entry:

sin θ = (cosh η − 1)
(
cosλ sin λ cos θ − cos2 λ sin θ

)
;

=⇒ tan θ
(
1 + cos2 λ (cosh η − 1)

)
= (cosh η − 1) cos λ sin λ,

∴ tan θ =
(cosh η − 1) cos λ sinλ

1 + cos2 λ cosh η − cos2 λ
. (a.7)

b) A spaceship A moves with velocity vA along x̂ relative to O and another, B, moves with speed
vB along ŷ relative to A. Determine the direction and velocity of the frame O relative to B.

To map this exactly to the previous problem, we do things backwards and transform
B → A followed by A → O relative to B. That is, let tanh α = −vB and tanh β = vA.
Now, the magnitude of the velocity of frame O relative to B has rapidity given by
equation (a.5), and is moving in the direction an angle π−(θ+λ) relative to A where
λ and θ are given by equations (a.6) and (a.7), respectively.

3This required a bit of algebra, but it isn’t worth doing in public.





Physics , General Relativity
Homework 

Due Monday, th October 
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Problem 1
Let frame O move with speed v in the x-direction relative to frame O. A photon with frequency ν

measured in O moves at an angle θ relative to the x-axis.
a) We are to determine the frequency of the photon in O’s frame.

From the set up we know that the momentum of the photon in O is1 (E, E cos θ, E sin θ)—
that this momentum is null is manifest. The energy of the photon is of course E = hν
where h is Planck’s constant and ν is the frequency in O’s frame.

Using the canonical Lorentz boost equation, the energy measured in frame O is given by

E = Eγ − E cos θvγ,

= hνγ − hν cos θvγ.

But E = hν, so we see

∴

ν

ν
= γ (1− v cos θ) . (a.1)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

b) We are to find the angle θ at which there is no Doppler shift observed.

All we need to do is find when ν/ν = 1 = γ (1− v cos θ). Every five-year-old should
be able to invert this to find that the angle at which no Doppler shift is observed is
given by

∴ cos θ =
1

v

(
1−

√
1− v2

)
. (b.1)

Notice that this implies that an observer moving close to the speed of light relative
to the cosmic microwave background2 will see a narrow ‘tunnel’ ahead of highly blue-
shifted photons and large red-shifting outside this tunnel. As the relative velocity
increases, the ‘tunnel’ of blue-shifted photons gets narrower and narrower.

c) We are asked to compute the result in part a above using the technique used above.

This was completed already. We made use of Schutz’s equation (2.35) when we wrote
the four-momentum of the photon in a manifestly light-like form, and we made use
of Schutz’s equation (2.38) when used the fact that E = hν.

1We have aligned the axes so that the photon is travelling in the xy-plane. This is clearly a choice we are free to make.
2The rest frame of the CMB is defined to be that for which the CMB is mostly isotropic—specifically, the relative

velocity at which no dipole mode is observed in the CMB power spectrum.
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Problem 2
Consider a very high energy cosmic ray proton, with energy 109mp = 1018 eV as measured in the

Sun’s rest frame, scattering off of a cosmic microwave background photon with energy 2× 10−4eV. We
are to use the Compton scattering formula to determine the maximum energy of the scattered photon.

We can guide out analysis by some simple heuristic heuristic. First of all, we are going
to be interested in high momentum transfer interactions. In the proton rest frame we
know from e.g. the Compton scattering formula that the hardest type of scattering
occurs when the photon is fully ‘reflected’ with a scattering angle of θ = π; this is
also what we would expect from classical physics3.

Now, imagine the proton travelling toward an observer at rest in the solar frame; any
photons that scatter off the proton, ignoring their origin for the moment, will be
blue-shifted (enormously) like a star would be, but only in the very forward direction
of the proton. This means that the most energetic photons seen by an observer in
the solar rest frame will be coming from those ‘hard scatters’ for which the final state
photon travels parallel to the proton. Combining these two observations, we expect
the most energetic scattering process will be that for which the photon and proton
collide ‘head-on’ in the proton rest frame such that the momentum direction of the
incoming photon is opposite to the incoming momentum of the proton in the solar
frame.

We are now ready to verify this intuition and compute the maximum energy of the
scattered photon. Before we start, it will be helpful to clear up some notation. We
will work by translating between the two relevant frames in the problem, the proton
rest frame and the solar rest frame. We may without loss of generality suppose
that the proton is travelling in the positive x-direction with velocity v—with γ =(
1− v2

)
−1/2

—in the solar frame. Also in the solar frame, we suppose there is some

photon with energy Ei
γ = 2 × 10−4 eV. This is the photon which we suppose to

scatter off the proton.

The incoming photon’s energy in the proton’s rest frame we will denote E
i

γ ; in the proton

frame, we say that the angle between the photon’s momentum and the positive x-
axis is θ. After the photon scatters, it will be travelling at an angle θ−ϕ relative to
the x-axis, where ϕ is the angle between the incoming and outgoing photon in the

proton’s rest frame. This outgoing photon will have energy denoted E
f

γ . We can then
boost this momentum back to the solar rest frame where its energy will be denoted
Ef

γ .
From our work in problem 1 above, we know how to transform the energy of a photon

between two frames with relative motion not parallel to the photon’s direction. Let us
begin our analysis by considering a photon in the proton’s rest frame and determine
what energy that photon had in the solar rest frame. Boosting along the (−x)-
direction from the proton frame, we see that

Ei
γ = E

i

γγ
(
1 + v cos θ

)
=⇒ E

i

γ =
Ei

γ

γ
(
1 + v cos θ

) . (a.1)

We can relate the energy and scattering angle of the final-state photon in the proton
rest frame using the Compton formula. Indeed, we see that

E
f

γ =
E

i

γmp

mp + E
i

γ (1− cosϕ)
, (a.2)

where ϕ is the scattering angle in this frame.
Finally, we need to reverse-boost the outgoing photon from the proton frame to the solar

frame. Here, it is necessary to note that the relative angle between the outgoing

3In the proton rest frame, however, this process does not look like what we’re after: this process minimizes the out-state
photon’s energy in that frame. Nevertheless, it is the hardest type of scattering available—any other collision transfers
less momentum between the proton and the photon.
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Figure 1. These graphs indicate the scattering energy of an incoming 2 × 10−4 eV
photon, as measured in the solar frame, as a function of the incoming and outgoing
angles θ and ϕ as measured in the proton rest frame. The plot on the left is for the
situation presently under investigation, where the proton energy is 109mp; because of
the extremely wide-range of out-going photon energies, this is plotted on a log-scale.
On the right is a simpler example where the cosmic ray proton is travelling only semi-
relativistically with velocity v = 4c/5. In both cases it is clear that the maximal energy

observed for scattering takes place when ϕ = θ = π.

photon and the x-axis is now θ − ϕ. Recalling that we are boosting in the (−x)-
direction again, we see

Ef
γ = E

f

γγ
{
1 + v cos

(
θ − ϕ

)}
. (a.3)

Putting all these together, we see that

Ef
γ = E

f

γγ
{
1 + v cos

(
θ − ϕ

)}
,

=
E

i

γmp

mp + E
i

γ (1− cosϕ)
γ

{
1 + v cos

(
θ − ϕ

)}
,

=
Ei

γmp

mp + Ei
γ

(1−cos ϕ)

γ(1+v cos θ)

γ
{
1 + v cos

(
θ − ϕ

)}

γ
(
1 + v cos θ

) ,

∴ Ef
γ =

Ei
γmp

{
1 + v cos

(
θ − ϕ

)}

mp

(
1 + v cos θ

)
+ Ei

γ
1−cos ϕ

γ

. (a.4)

The function above is plotted in Figure 1 along with the analogous result for a less-
energetic cosmic ray proton.

At any rate, it is clear from the plot or a simple analysis of the second derivatives of Ef
γ

that the global maximum is precisely at θ = ϕ = π. This is exactly what we had
anticipated—when the collision is head-on and the photon is scattered at an angle
π. We can use this to strongly simplify the above equation (a.4),

max
{
Ef

γ

}
=

Ei
γmp (1 + v)

mp (1− v) + 2Ei
γ

√
1− v2

. (a.5)

To actually compute the maximum energy allowed, we will need to put in numbers. We
know that the energy of the proton is 109mp = γmp so γ = 109. This is easily
translated into a velocity of approximately 1 − 5 × 10−19. Knowing that the mass
of a proton is roughly 109 eV, the first term in the denominator of equation (a.5) is
O ∼ 10−10 whereas the second term is O ∼ ×10−13, so to about a 1 percent accuracy
(which is better than our proton mass figure anyway), we can approximate equation
(a.5) as

max
{
Ef

γ

}
≃ Ei

γ

1 + v

1− v
≈

2Ei
γ

1− v
= 8× 1014 eV. (a.6)
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Therefore, the maximum energy of a scattered CMB photon from a 1018 eV cosmic ray
proton is about 400 TeV—much higher than collider-scale physics. However, the
rate of these types of hard-scatters is enormously low. Indeed, recalling the picture
of a narrowing tunnel of blue-shift at high boost, we can use our work from problem
1 to see that only photons within a 0.0025◦ cone about the direction of motion of
the proton are blue-shifted at all—and these are the only ones that can gain any
meaningful energy from the collision. This amounts to a phase-space suppression
of around 10−10 even before we start looking at the small rate and low densities
involved.

Problem 3
Consider the coordinates u = t− x and v = t + x in Minkowski spacetime.
a) We are to define a u, v, y, z-coordinate system with the origin located at {u = 0, v = 0, y = 0, z = 0}

with the basis vector ~eu connecting between the origin and the point {u = 1, v = 0, y = 0, z = 0} and
similarly for ~ev. We are to relate these basis vectors to those in the normal Minkowski frame, and draw
them on a spacetime plot in t, x-coordinates.

We can easily invert the defining equations u = t− x and v = t + x to find

t =
u + v

2
and x =

v − u

2
. (a.1)

Therefore, the the origin in u, v-coordinates is also the origin in tx-space. Also, the
point where u = 1, v = 0 which defines ~eu has coordinates t = ½, x = −½ in tx-space;
the point u = 0, v = 1 corresponds to t = ½, x = ½ so that

~eu =
~et − ~ex

2
and ~ev =

~et + ~ex

2
. (a.2)

These basis vectors are labeled on Figure 2.

Figure 2. Figure required for problem 3 which shows the vectors ~eu and ~ev on the tx-plane.

b) We are to show that {~eu, ~ev, ~ey, ~ez} span all of Minkowski space.

Because the map (a.2) is a bijection, the linear independence of ~et and ~ex implies linear
independence of ~eu and ~ev. And because these are manifestly linearly independent
of ~ey and ~ez, the four vectors combine to form a linearly-independent set—which is
to say that they span all of space.
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c) We are to find the components of the metric tensor in this basis.

The components of the metric tensor in any basis {~ei} is given by the matrix g̃ij =
g (~ei, ~ej) where g (·, ·) is the metric on spacetime. Because we have equation (a.2)
which relates ~eu and ~ev to the tx-bases, we can compute all the relevant inner products
using the canonical Minkowski metric. Indeed we find,

g̃ij =




0 1/2 0 0
1/2 0 0 0
0 0 1 0
0 0 0 1


 . (c.1)

d) We are to show that ~eu and ~ev are null but they are not orthogonal.

In part c above we needed to compute the inner products of all the basis vectors, includ-
ing ~eu and ~ev. There we found that g (~eu, ~ev) = 1/2, so ~eu and ~ev are not orthogonal.
However, g (~eu, ~eu) = g (~eu, ~ev) = 0, so they are both null.

e) We are to compute the one-forms du, dv, g(~eu, ·), and g(~ev, ·).

As scalar functions on spacetime, it is easy to compute the exterior derivatives of u and
v. Indeed, using their respective definitions, we find immediately that

du = dt− dx and dv = dt + dx. (e.1)

The only difference that arises when computing g(~eu, ·), for example, is that the com-

ponents of ~eu are given in terms of the basis vectors ~et and ~ex as in equation (a.2).
Therefore in the usual Minkowski component notation, we have ~eu = (½,−½, 0, 0) and
~ev = (½, ½, 0, 0) . Using our standard Minkowski metric we see that

g (~eu, ·) = −1

2
dt− 1

2
dx and g (~ev, ·) = −1

2
dt +

1

2
dx. (e.2)

Problem 4
We are to give an example of four linearly independent null vectors in Minkowski space and show why

it is not possible to make them all mutually orthogonal.

An easy example that comes to mind uses the coordinates {x−, x+, y+, z+} given by

x− = t− x x+ = t+ = x y+ = t + y z+ = t + z. (a.1)

In case it is desirable to be condescendingly specific, this corresponds to taking basis
vectors {~ex−, ~ex+, ~ey+, ~ez+} where

~ex− =
~et − ~ex

2
~ex+ =

~et + ~ex

2
~ey+ =

~et + ~ey

2
~ez+ =

~et + ~ez

2
. (a.2)

It is quite obvious that each of these vectors is null, and because they are related to the
original basis by an invertible map they still span the space. Again, to be specific4,
notice that ~et = ~ex−+~ex+ and so we may invert the other expressions by ~ei = 2~ei+−~et

where i = x, y, z.
Let us now show that four linearly independent, null vectors cannot be simultaneously

mutually orthogonal. We proceed via reductio ad absurdum: suppose that the set
{~vi}i=1,...4 were such linearly independent, mutually orthogonal and null. Because
they are linearly independent, they can be used to define a basis which has an asso-
ciated metric, say g̃. Now, as a matrix the entries of g̃ are given by g̃ij = g̃ (~vi, ~vj);
because all the vectors are assumed to be orthogonal and null, all the entries of g̃ are

4Do you, ye grader, actually care for me to be this annoyingly specific?
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zero. This means that it has zero positive eigenvalues and zero negative eigenvalues—
which implies signature(g̃) = 0. But the signature of Minkowski spacetime must be
±2 5, and this is basis-independent. −→←−

To go one step further, the above argument actually implies that no null vector can be
simultaneously orthogonal to and linearly independent of any three vectors.

Problem 5
The frame O moves relative to O with speed v in the z-direction.

a) We are to use the fact that the Abelian gauge theory field strength Fµν is a tensor to express

the electric and magnetic field components measured in O in terms of the components measured in O.

To determine the components of the field strength measured in frame O in terms of the
components of frame O, all we need to do is apply a Lorentz transformation for each
of the two indices in Fab:

Fab = Λ c
a Λ d

b
Fcd. (a.1)

Using some of our work in class to identify the components of Fcd, we may write the
above expression in matrix notation6 as

Fab =




γ 0 0 vγ
0 1 0 0
0 0 1 0
vγ 0 0 γ


 ·




0 Ex Ey Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 ·




γ 0 0 vγ
0 1 0 0
0 0 1 0
vγ 0 0 γ


 ,

=




0 γ(Ex − vBy) γ(Ey + vBx) γ2Ez(1− v2)
−γ(Ex − vBy) 0 −Bz −γ(vEx −By)
−γ(Ey + vBx) Bz 0 −γ(vEy + Bx)
γ2Ez(v

2 − 1) γ(vEx −By) γ(vEy + Bx) 0


 .

Using the fact that γ2(1− v2) = 1, we see that these imply

Ex = γ (Ex − vBy) Ey = γ (Ey + vBx) Ez = Ez , (a.2)

Bx = γ (Bx + vEy) By = γ (By − vEx) Bz = Bz. (a.3)

b) Say a particle of mass m and charge q is subjected to some electromagnetic fields. The particle
is initially at rest in O’s frame. We are to calculate the components of its four-acceleration as measured
in O at that moment, transform these components into those measured in O and compare them with
the equation for the particle’s acceleration directly in O’s frame.

We will use the fact that the four-acceleration is given by

dUa

dτ
=

q

m
F a

bU
b, (a.1)

where Ua is the four-velocity and τ is some affine parameter along the particle’s
world-line. Now, the above equation works in any reference frame—we can substitute
indices with bars over them if we’d like. Because the particle is initially at rest in
frame O, it’s four velocity is given by Ua = (−1, 0, 0, 0). Therefore we can easily

5The ‘±’ depends on convention. Actually, if you use complexified space or complexified time (which is more common,
but still unusual these days), then you could get away with signature ±4.

6Here, as everywhere in every situation similar to this, γ =
�
1 − v

2
�
−1/2

where v is the velocity in question; in this

case v.
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compute the four-acceleration in frame O as follows:

dUa

dτ
=

q

m
F a

bU
b =

q

m
ga℘F℘bU

b,

=
q

m




0 −Ex −Ey −Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 ·




−1
0
0
0


 ,

=
q

m

(
0, Ex, Ey, Ez

)
.

This results shows us that sometimes relativity is terribly unnecessary—the result is
completely obvious from a classical electrodynamics point of view.

To determine the components of the four-acceleration as viewed in frame O, all we
need to do is Lorentz transform the components of the four-acceleration back into O

(because it is a vector). We find then that the four-acceleration in O is given by

dUa

dτ
= Λa

a

dUa

dτ
=

q

m




γ 0 0 vγ
0 1 0 0
0 0 1 0
vγ 0 0 γ







0
Ex

Ey

Ez


 ,

=
q

m




vγEz

Ez

Ey

γEz


 ,

which upon substitution of the O field components in terms of the O components,
implies

dUa

dτ
=

qγ

m




vEz

Ex − vBy

Ey + vBx

Ez


 . (a.2)

Now, to compute this directly in frame O, we need only transform the four-velocity
vector Ua into Ua,

Ua = Λa
aUa =




−γ
0
0
−vγ


 , (a.3)

and use this in the expression for the four-acceleration for an Abelian field theory as
quoted above. So we have

dUa

dτ
=

q

m
F a

bU
b =

q

m




0 −Ex −Ey −Ez

−Ex 0 −Bz By

−Ey Bz 0 −Bx

−Ez −By Bx 0


 ·




−γ
0
0
−vγ


 , (a.4)

∴

dUa

dτ
=

qγ

m




vEz

Ex − vBy

Ey + vBx

Ez


 . (a.5)
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Problem 1
a) Let us consider the region of the t− x-plane which is bounded by the lines t = 0, t = 1, x = 0, and

x = 1; we are to find the unit outward normal one-forms and their associated vectors for each of the
boundary lines.

It is not hard to see that the unit outward normal one-forms and their associated vectors
are given by

t = 0 : −dt 7→ ~et t = 1 : dt 7→ −~et; (1.a.1)

x = 0 : −dx 7→ −~ex x = 1 : dx 7→ ~ex. (1.a.2)

b) Let us now consider the triangular region bounded by events with coordinates (1, 0), (1, 1), and
(2, 1); we are to find the outward normal for the null boundary and its associated vector.

The equation for the null boundary of the region is t = x + 1, which is specified by the
vanishing of the function t − x − 1 = 0. The normal to the surface is simply the
gradient of this zero-form, and so the normal is

dt− dx, (1.b.3)

and the associated vector is
−~et − ~ex. (1.b.4)

Problem 2
We are to describe the (proper orthochronous) Lorentz-invariant quantities that can be built out of the

electromagnetic field strength Fab and express these invariant in terms of the electric and magnetic fields.

Basically, any full contraction of indices will result in a Lorentz-invariant quantity. Fur-
thermore, because we are considering things which are invariant under only proper
orthochronous transformation, we are free to consider CP -odd combinations, which
mix up components with their Hodge-duals. A list of such invariants are:

F a
a = 0 F abFab = − (

?F ab
)
(?Fab) = 2

(
~B2 − ~E2

) (
?F ab

)
Fab = −4 ~E · ~B. (2.a.1)

This does not exhaust the list of invariants, however: we are also free to take a number
of derivatives. These start getting rather horrendous, but we can start with an easy
example: (

∂aF ab
)2

= 16π2JaJa = 16π2
(

~J2 − ρ2
)

. (2.a.2)

Along this vein, we find
(
∂aF ab

) (
∂cF

cd
)
Fbd = 16π2 ~J ·

(
~B × ~J

)
; (2.a.3)

[(
∂aF ab

)
F ab

]2
= 16π2

{
ρ2 ~E2 −

(
~E · ~J

)2

+
(

~B × ~J
)2

− 2ρ ~E ·
(

~B × ~J
)}

; (2.a.4)

(
∂aF ab

) (
∂cF

cd
)
(?Fbd) = 16π2 ~J ·

(
~E × ~J

)
. (2.a.5)

We could go higher in derivatives, but we know that ∂a ? F ab = 0 and we are free to
make the Lorentz gauge choice ¤F ab = 0. I suspect that further combinations will
not yield independent quantities.

1
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Problem 3
Consider a pair of twins are born somewhere in spacetime. One of the twins decides to explore the

universe; she leaves her twin brother behind and begins to travel in the x-direction with constant ac-
celeration a = 10 m/s2 as measured in her rocket frame. After ten years according to her watch, she
reverses the thrusters and begins to accelerate with a constant −a for a while.

a) At what time on her watch should she again reverse her thrusters so she ends up home at rest?

There is an obvious symmetry in this problem: if it took her 10 years by her watch to go
from rest to her present state, then 10 years of reverse acceleration will bring her to
rest, at her farthest point from home. Because of the constant negative acceleration,
after reaching her destination at 20 years, she will begin to accelerate towards home
again. In 10 more years, when her watch reads 30 years, she will be in the same state
as when her watch read 10 years, only going in the opposite direction.

Therefore, at 30 years, she should reverse her thrusters again so she arrives home in her
home’s rest frame.

b) According to her twin brother left behind, what was the most distant point on her trip?
To do this, we need only to solve the equations for the travelling twin’s position and time

as seen in the stationary twin’s frame. This was largely done in class but, in brief,
we know that her four-acceleration is normal to her velocity: aξuξ = 0 everywhere
along her trip, and aξaξ = a2 is constant. This leads us to conclude that

at =
dut

dτ
= aux and ax =

dux

dτ
= aut, (3.b.1)

where τ is the proper time as observed by the travelling twin. This system is quickly
solved for an appropriate choice of origin1:

t =
1
a

sinh (aτ) and x =
1
a

cosh (aτ) . (3.b.2)

This is valid for the first quarter of the twin’s trip—all four ‘legs’ can be given
explicitly by gluing together segments built out of the above.

For the purposes of calculating, it is necessary to make aτ dimensionless. This is done
simply by

a =
10 m
sec2

= 1.053 year−1. (3.b.3)

An approximate result2 could have been obtained by thinking of c = 3×108 m/s and
3× 107 sec = 1 year.

So the distance at 10 years is simply

x(10 yr) =
1

1.053
cosh (10.53) = 17710 light years.

The maximum distance travelled by the twin as observed by her (long-deceased) brother
is therefore twice this distance, or3

max(x) = 35, 420 light years. (3.b.4)

c) When the sister returns, who is older, and by how much?
Well, in the brother’s rest frame, his sister’s trip took four legs, each requiring

t(10 yr) =
1

1.053
sinh (10.53) = 17710 years,

which means that
ttotal = 70, 838 years. (3.c.5)

In contrast, his sister’s time was simply her proper time, or 40 years. Therefore the
brother who stayed behind is now 70, 798 years older than his twin sister.

1We consider the twin to begin at (t = 0, x = 1).
2Because cosh goes like an exponential for large argument, our result is exponentially sensitive to the figures; because

we know c and the number of seconds per year to rather high-precision, there is no reason not to use the correct value of
a—indeed, the approximate value of a ∼ 1 year−1 gives an answer almost 40% below our answer.

3If we had used instead a = 1/year as encouraged by the problem set, our answer would have been 22, 027 light years.
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Problem 44

Consider a star located at the origin in its rest frame O emitting a continuous flux of radiation,
specified by luminosity L.

a) We are to determine the non-vanishing components of the stress-energy tensor as seen by an ob-
server located a distance x from the star along the x-axis of the star’s frame.

There are many ways to go about determining the components of the stress-energy
tensor. We will be un-inspired and compute it directly from the equation for the
Maxwell stress-energy tensor (found by looking at metric variations of the Maxwell
action):

T ab = F a
cF

bc − 1
4
ηabFabF

ab. (4.a.1)

We have in previous exercises computed all of the necessary terms, so we may simply
quote that

T 00 = ~E2 +
1
2

(
~B2 − ~E2

)
=

1
2

(
~B2 + ~E2

)
= |~S|, (4.a.2)

T 0i =
(

~E × ~B
)i

= |~S|, (4.a.3)

where ~S is the Poynting vector, whose magnitude is just the energy density flux.
Now, when we expand T xx, we find a bit more work in for us, at first glance, we see

T xx =
3
2
E2

x −
1
2
B2

x +
1
2

(
E2

y + E2
z + B2

y + B2
z

)
;

but we should note that because the radiation is only reaching the observer along
the x-direction, ~S lies along the x-direction and so Bx = Ex = 0; therefore, we do
indeed see that

T xx =
1
2

(
~B2 + ~E2

)
= |~S|. (4.a.4)

And making use of the fact that ~S only has components in the x-direction, we see
that T 0y = T 0z = 0—with symmetrization implied.

Now, the energy density flux over a sphere centred about the origin of radius x naturally
is L

4πx2 . Therefore, we see that

∴ T 00 = T x0 = T 0x = T xx =
L

4πx2
. (4.a.5)

b) Let ~X be the null vector connecting the origin in O to event at which the radiation is measured.
Let ~U be the velocity four-vector of the sun. We are to show that ~X → (x, x, 0, 0) and that T ab has the
form

T =
L

4π

~X ⊗ ~X(
~U · ~X

)4 .

Well, it is intuitively obvious that if an observer sees radiation at (x, x, 0, 0), that, because
it is null and forward-propagating, it must have been emitted from a source along
the line τ(1, 1, 0, 0) where τ is an affine parameter for the world line of the photon.
If it is the case that the photon was emitted by the sun that is sitting at x = 0, then
it must have been emitted at (0, 0, 0, 0), which means that ~X → (x, x, 0, 0).

Now, using the fact that ~U = (1, 0, 0, 0) for the star, we have that ~U · ~X = x, and this is
frame-independent. Now, we see that ~X⊗ ~X only has components in (t, x)-directions

4This is the most poorly worded problem I have encountered thus far in this course. If there is any misunderstanding,
I am strongly inclined to blame Schutz.
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and furthermore all the coefficients are the same, namely x2. Therefore

L

4π

~X ⊗ ~X(
~U · ~X

)4 =
L

4πx2
(~et ⊗ ~et + ~et ⊗ ~et + ~ex ⊗ ~et + ~ex ⊗ ~ex) . (4.b.6)

Because this matches our explicit calculation in a certain frame and the expression
is manifestly frame-independent we see that this is a valid expression for T in any
reference frame5.

c) Consider an observer O travelling with speed v away from the star’s frame O in the x-direction.
In that frame, the observation of radiation is at ~X → (R, R, 0, 0). We are to find R as a function of x

and express T 0x in terms of R.

There is no need to convert ~U of the sun into O’s coordinates because it only appears in
T as a complete contraction—which is to say that ~U · ~X is frame independent. Now,
all we need to do then is compute the coordinates of ~X in O’s coordinate system.
This is done by a simple Lorentz transformation:

~X → O (xγ(1− v), xγ(1− v), 0, 0) ≡ (R, R, 0, 0), (4.c.7)

which is to say, R = xγ(1− v).
Bearing in mind that the numerator in the expression of T was invariant, we see that

T 0x =
L

4π

R2

x4
. (4.c.8)

Now, inverting our expression for R, we see that

x2 =
R2

γ2(1− v)2
= R2

(
1 + v

1− v

)
,

and so

∴ T 0x =
L

4πR2

(
1− v

1 + v

)2

. (4.c.9)

5Well, specifically, the difference between the T ab calculated above and the coordinate-free tensor vanishes identically
at x; this tensor identity is obviously frame independent and so the tensors are identical.



Physics , General Relativity
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Jacob Lewis Bourjaily

Problem 1
Recall that the worldline of a continuously accelerated observer in flat space relative to some inertial

frame can be described by

t(λ, α) = α sinh(λ) and x(λ, α) = α cosh(λ), (1.a.1)

where λ is an affine parameter of the curve with αλ its proper length—i.e. the ‘time’ as measured by
an observer in the accelerated frame. Before, we considered α to be constant and only varied λ. We
are now going to consider the entire (non-surjective) curvilinear map from two-dimensional Minkowski
to-space to itself defined by equation (1.a.1).

a) Consider the differential map from t, x-coordinate charts to λ, α-coordinate charts implied by equa-
tion (1.a.1)—lines of constant α are in the λ-direction, and lines of constant λ are in the α-direction.
We are to show that wherever lines of constant α meet lines of constant λ, the two curves are orthogonal.

To show that the two curves cross ‘orthogonally,’ we must demonstrate that their
tangent vectors are orthogonal at points of intersection. This is not particularly
hard. Because orthogonality is a frame independent notion, we may as well com-
pute this in t, x-space. The lines of constant λ parameterized by α are given by
ℓ(α) = (α sinh λ, α, cosh λ) , which has the associated tangent vector

~ℓ ≡ ∂ℓ(α)

∂α
= (sinhλ, coshλ) . (1.a.2)

Similarly, lines of constant α parameterized by λ are ϑ(λ) = (α sinh λ, α coshλ) ,
which obviously has the associated tangent

~ϑ ≡ ∂ϑ(λ)

∂λ
= (α coshλ, α sinh λ) . (1.a.3)

We see at once that

g(~ℓ, ~ϑ) = −α cosh λ sinh λ + α sinh λ coshλ = 0. (1.a.4)

‘óπǫρ ’ǫ́δǫι δǫ�ιξαι

x

t

x

t

Figure 1. The orthogonal curvilinear coordinate charts which could be used by a
uniformly accelerated observer in Minkowski spacetime. The red curves indicate surfaces
of constant α and the blue curves indicate surfaces of constant λ. The diagram on the
left shows the coordinate patch explicitly constructed in Problem 1, and the diagram on
the right extends this construction to the whole of Minkowski space—minus lightcone
of an observer at the origin.

1
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b) We are to show that the map specified by equation (1.a.1) gives rise to an orthogonal coordi-
nate system that covers half of Minkowski space in two disjoint patches. We should also represent this
coordinate system diagrammatically.

From our work in part (a) above, we know that the tangent vectors to the lines of
constant λ and α are given by

~eλ = α coshλ ~et + α sinh λ ~ex and ~eα = sinh λ ~et + coshλ ~ex. (1.b.1)

Therefore, the differential map (where greek letters are used to indicate λ, α-coordinates)
is given by

Λµ
n =

(
α cosh λ α sinh λ
sinh λ coshλ

)
. (1.b.2)

We see immediately that the Jacobian, det (Λ) = α 6= 0 which implies that the λ, α
coordinate system is good generically (where it is defined). That it is ‘orthogonal’ is
manifest because ~eλ · ~eα = 0 by part (a) above.

Note that the charts of (1.a.1) are not well-defined on or within the past or future
lightcones of an observer at the origin: the curves of α = constant, the hyperbolas,
are all time-like and outside the past and future lightcones of an observer at the
origin; and the lines of λ = constant are all spacelike and coincident at the origin.
It does not take much to see that these coordinates have no overlap within the past
and future lightcones of the Minkowski origin.

The coordinate system spanned by λ, α is shown in Figure 1.

c) We are to find the metric tensor and its associated Christoffel symbols of the coordinate charts
described above.

Using equation (1.b.1), we can directly compute the components of the metric tensor in
λ, α coordinates—gµν = g(~eµ, ~eν) where λ is in the ‘0’-position—

gµν =

(
−α2 0

0 1

)
. (1.c.1)

The Christoffel symbols can be computed by hand rather quickly in this case; but
we will still show some rough steps. Recall that the components of the Christoffel
symbol Γµ

νρ are given by

Γµ
νρ~eµ =

(
∂~eν

∂xρ

)µ

~eµ.

Again making use of equation (1.b.1), we see that

∂~eα

∂α
= 0 =⇒ Γα

αα = Γλ
αα = 0. (1.c.2)

Slightly less trivial, we see

∂~eα

∂λ
= coshλ ~et = sinh λ ~ex =

1

a
~eλ =⇒ Γλ

αλ = Γλ
λα =

1

α
; (1.c.3)

and,

∂~eλ

∂λ
= α sinh λ ~et + α cosh λ~ex = α~eα =⇒ Γα

λλ = α, and Γλ
λλ = 0. (1.c.4)

‘óπǫρ ’ǫ́δǫι πoι�ησαι
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Problem 2
We are to find the Lie derivative of a tensor whose components are T ab

c.

Although we are tempted to simply state the result derived in class and found in nu-
merous textbooks, we will at least feign a derivation. Let us begin by recalling that
the components of the tensor T are given by T ab

c = T(Ea,Eb,Ec) where the E’s are
basis vector- and one-form fields. Now, by the Leibniz rule for the Lie derivative we
know that

£X

(
T(Ea,Eb,Ec)

)
= £X(T)

(
Ea,Eb,Ec

)
+T

(
£X(Ea) ,Eb,Ec

)
+T

(
Ea,£X

(
Eb

)
,Ec

)
+T

(
Ea,Eb,£X(Ec)

)
.

(2.a.1)
Now, the first term on the right hand side of equation (2.a.1) gives the components
of £X(T), which is exactly what we are looking for. Rearranging equation (2.a.1) and
converting our notation to components, we see

(£X(T))
ab

c = £X

(
T ab

c

)
− T αb

c (£X(Ea))α − T aβ
c

(
£X

(
Eb

))
β
− T ab

γ (£X(Ec))
γ

. (2.a.2)

Now, we can either use some identities or just simply recall that

(£X(Ea))α =
∂Xa

∂xα
and (£X(Ec))

γ
=

∂Xγ

∂xc
. (2.a.3)

We now have all the ingredients; putting everything together, we have

(£X(T))
ab

c = Xδ ∂

∂xδ

(
T ab

c

)
− T αb

c

∂Xa

∂xα
− T aβ

c

∂Xb

∂xβ
+ T ab

γ

∂Xγ

∂xc
. (2.a.4)

‘óπǫρ ’ǫ́δǫι πoι�ησαι

Problem 3

Theorem: Acting on any tensor T, the Lie derivative operator obeys

£U£V(T) − £V£U(T) = £[U,V ](T). (3.a.1)

proof: We will proceed by induction. Let us suppose that the theorem holds for all tensors
of rank less than or equal to ( r

s) for some r, s ≥ 1. We claim that this is sufficient
to prove the hypothesis for any tensor of rank

(
r

s+1

)
or

(
r+1
s

)
. (The induction

argument is identical for the two cases—our argument will depend on which index is
advancing—so it is not necessary to expound both cases.)

Now, all rank
(

r+1
s

)
tensors can be written as a sum of tensor products between ( r

s)

rank tensors T indexed by i and rank
(

1
0

)
tensors E, again indexed by i1. That is,

we can express an arbitrary
(

r+1
s

)
tensor as a sum of

∑
i Ti ⊗Ei—where i is just an

index label! But this complication is entirely unnecessary: by the linearity of the Lie
derivative, it suffices to show the identity for any one tensor product in the sum.

Making repeated use of the linearity of the Lie derivative and the Leibniz rule, we see

(£U£V − £V£U) (T ⊗ E) =£U

(
(£VT) ⊗ E + T⊗ £VE

)
− £V

(
(£UT) ⊗ E + T ⊗ £UE

)
,

=
(
£U£VT

)
⊗ E + £VT ⊗ £UE + £UT ⊗ £VE + T ⊗

(
£U£VE

)

−
(
£V£UT

)
⊗ E− £UT ⊗ £VE− £VT ⊗ £UE − T⊗

(
£V£UE

)
,

=
(
£[U,V ]T

)
⊗ E + T ⊗

(
£[U,V ]E

)
,

=£[U,V ]

(
T ⊗ E

)
;

where in the second to last line we used the induction hypothesis—applicable because
both T and E are of rank ( r

s) or less.
‘óπǫρ ’ǫ́δǫι δǫ�ιξαι

1The savvy reader knows that an arbitrary ( r
s) tensor can not be written as a tensor product of r contravariant and s

covariant pieces; however every ( r
s) tensor can be written as a sum of such tensor products: indeed, this is exactly what

is done when writing ‘components’ of the tensor.
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It now suffices to show that the identity holds for all
(

0
1

)
forms and all

(
1
0

)
tensors2.

We will actually begin one-step lower and note that equation (3.a.1) follows trivially
from the Leibniz rule for 0-forms. Indeed, we see that for any 0-form f ,

£U(£Vf) =
(
£UV

)
f + V

(
£Uf

)
,

= £[U,V ]f + £V(£Uf) ,

∴

(
£U£V − £V£U

)
f = £[U,V ]f. (3.a.2)

Now, to finish our proof, we claim that the identity holds for any
(

1
0

)
and

(
0
1

)
tensors,

say X and Y, respectively. Recall that a one form Y is a function mapping vector
fields into scalars—i.e. Y(X) is a 0-form. For our own convenience, we will write
Y(X) ≡ 〈X,Y〉. From our work immediately above, we know the identity holds for
〈X,Y〉: (

£U£V − £V£U

)
〈X,Y〉 = £[U,V ]

(
〈X,Y〉

)
. (3.a.3)

Because the Leibniz rule obeys contraction, we can expand out the equation above similar
to as before. Indeed, almost copying the equations above verbatim we find

(£U£V − £V£U) (〈X,Y〉) =£U

(
〈(£VX) ,Y〉 + 〈X,£VY〉

)
− £V

(
〈(£UX) ,Y〉 + 〈X,£UY〉

)
,

= 〈£U£VX,Y〉 + 〈£VX,£UY〉 + 〈£UX,£VY〉 + 〈X,£U£VY〉
− 〈£V£UX,Y〉 − 〈£UX,£VY〉 − 〈£VX,£UY〉 − 〈X,£V£UY〉 ,

=
〈(

£U£V − £V£U

)
X,Y

〉
+

〈
X,

(
£U£V − £V£U

)
Y

〉
,

=
〈
£[U,V ]X,Y

〉
+

〈
X,£[U,V ]Y

〉
.

In the last line, we referred to equation (3.a.3) and expanded it using the Leibniz rule.
Almost a footnote-comment: the last two lines do not precisely prove our required
theorem as they stand: to identify the two pieces of each sum we need one small
trick—replace one of X or Y with the basis one-forms or vector fields, and the result
for the other becomes manifest.

Therefore, because equation (3.a.1) holds for all one-forms and vector fields, our induc-
tion work proves that it must be true for all tensor fields of arbitrary rank. ‘óπǫρ ’ǫ́δǫι δǫ�ιξαι

2You should probably suspect this is overkill: the induction step seemed to make no obvious use of the fact that r, s ≥ 1.
And, as shown below, the identity is almost trivially true for the case of scalars. Nevertheless, it is better to be over-precise
than incorrect. (In the famous words of Blaise Pascal to a mathematician friend: “I have made this letter longer because
I have not had the time to make it shorter.”)
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Problem 4
The torsion and curvature tensors are defined respectively,

T (X, Y ) = ∇XY −∇Y X − £XY and R(X, Y ) = ∇X∇Y −∇Y ∇X −∇[X,Y ]. (4.a.1)

We are to prove

a) T (fX, gY ) = fgT (X, Y ),

b) R(fX, gY )hZ = fghR(X, Y )Z,

for arbitrary functions f, g and h, and vector fields X, Y and Z.

Theorem a: T (fX, gY ) = fgT (X, Y ).

proof: In both of the required proofs, we will make repeated uses of the ‘defining’ properties
of the covariant derivative ∇ and of the Lie derivative. In particular, we will need
the following properties of the connection:
(1) ∇XY is a tensor in the argument X . This means that as an operator, ∇fX+gY =

f∇X + g∇Y .
(2) ∇XY obeys the Leibniz rule in Y . Specifically, this means ∇X(fY ) = X(f)Y +

f∇XY . This implies that ∇XY is linear in Y —which follows when f is a con-
stant.

We are almost ready to ‘prove the identity by brute force in a couple of lines.’ Let’s just
prepare one more trick up our sleeve: we will need

[fX, gY ] = £fX(gY ) = g£fXY +
(
£fXg

)
Y,

= −g£Y(fX) + fX(g)Y,

= −gfY (X) − gXY (f) + fX(g)Y.

Let us begin:

T (fX, gY ) = ∇fX(gY ) −∇gY (fX) − £fX(gY ) ,

= f∇X(gY ) − g∇Y (fX) − £fX(gY ) ,

= fX(g)Y + fg∇XY − g(Y (f))X − fg∇Y X + gfY (X) + gXY (f) − fX(g)Y,

= fg∇XY − fg∇Y X − gf£XY,

∴ T (fX, gY ) = fgT (X, Y ). (4.a.2)

‘óπǫρ ’ǫ́δǫι δǫ�ιξαι

Theorem b: R(fX, gY )hZ = fghR(X, Y )Z.

proof: We have already collected all of the properties and identities necessary to straight-
forwardly prove the theorem. Therefore, we may proceed directly.

R(fX, gY )hZ =
{
∇fX∇gY −∇gY ∇fX −∇[fX,gY ]

}
hZ,

=
{
f∇X (g∇Y ) − g∇Y (f∇X) − fg∇[X,Y ] − f∇Y X(g) + g∇XY (f)

}
hZ,

=
{
fX(g)∇Y + fg∇X∇Y − gY (f)∇X − fg∇Y ∇X − fg∇[X,Y ] − fX(g)∇Y + gY (f)∇X

}
hZ,

=
{
fg∇X∇Y − fg∇Y ∇X − fg∇[X,Y ]

}
hZ,

=fgR(X, Y )hZ,

=fg
{
∇X

(
Y (h)Z + h∇Y Z

)
−∇Y

(
X(h)Z + h∇XZ

)
− [X, Y ] (h)Z − h∇[X,Y ]Z

}
,

=fg
{
∇X

(
Y (h)Z

)
+ X(h)∇Y Z + h∇X∇Y Z −∇Y

(
X(h)Z

)
− Y (h)∇XZ − h∇Y ∇XZ

− X (∇Y h)Z + Y (∇Xh)Z − h∇[X,Y ]Z
}
,

=fg
{
hR(X, Y )Z + (∇X (Y (h)))Z −∇Y (X(h))Z − X (Y (h)) Z + Y (X(h))Z

}
,

∴ R(fX, gY )hZ = fghR(X, Y )Z. (4.b.1)

‘óπǫρ ’ǫ́δǫι δǫ�ιξαι





Physics , General Relativity
Homework 

Due Friday, th November 

Jacob Lewis Bourjaily

Problem 1
Let us consider a manifold with a torsion free connection R(X, Y ) which is not necessarily metric

compatible. We are to prove that

R(X, Y )Z + R(Y, Z)X + R(Z, X)Y = 0, (1.1)

and the Bianchi identity

∇X

(
R(X,Y )

)
V +∇Y

(
R(Z,X)

)
V +∇Z

(
R(X,Y )

)
V = 0. (1.2)

The first identity is relatively simple to prove—it follows naturally from the Jacobi
identity for the Lie derivative. Let us first prove the Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0. (1.3)

Using the antisymmetry of the Lie bracket and our result from last homework problem
3, we have

[X, [Y,Z]] = £X[Y, Z] = −£[Y,Z]X = £Z£YX −£Y£ZX = −[Z, [X, Y ]]− [Y, [Z,X]].
‘óπερ ’έδει δε�ιξαι

The condition of a connection being torsion free is that

£XY = ∇XY −∇Y X. (1.4)

Expanding the Lie brackets encountered in the statement of the Jacobi identity,

0 =£X£YZ + £Y£ZX + £Z£XY,

=£X(∇Y Z −∇ZY ) + £Y (∇Y X −∇XY ) + £Z(∇XY −∇Y X) ,

=∇X∇Y Z −∇X∇ZY −∇[Y,Z]X +∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y +∇Z∇XY −∇Z∇Y X −∇[X,Y ]Z,

=
(∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z +

(∇Y∇Z −∇Z∇Y −∇[Y,Z]

)
X +

(∇Z∇X −∇X∇Z −∇[Z,X]

)
Y ;

∴ R(X,Y )Z + R(Y, Z)X + R(Z, X)Y = 0. (1.5)
‘óπερ ’έδει δε�ιξαι

To prove the Bianchi identity, we will ‘dirty’ our expressions with explicit indices in
hope of a quick solution. It is rather obvious to see that (1.2) is equivalent to the
component expression

Ra
bcd;e + Ra

bde;c + Ra
bec;d = 0. (1.6)

Worse than introducing components, let us use our (gauge) freedom to consider the
Bianchi identity evaluated at a point p in spacetime in Riemann normal coordinates1.
If we show that the Bianchi identity (1.6) holds in any particular coordinates at a
point p, it necessarily must hold in any other coordinate system—and if p is arbitrary,
then it follows that the Bianchi identity holds throughout spacetime.

Recall from lecture or elsewhere that Riemann normal coordinates at p are such that
Γa

bc(p) = 0. This implies that the covariant derivative of the Riemann tensor is simply
a normal derivative at p. Using the definition of Ra

bcd in terms of the Christoffel
symbols, we see at once that

Ra
bcd;e(p) + Ra

bde;c(p) + Ra
bec;d(p) = Γa

bd,ce(p)− Γa
bc,de(p) + Γa

be,dc(p)− Γa
bd,ec(p) + Γa

bc,ed(p)− Γa
be,cd(p);

∴ Ra
bcd;e(p) + Ra

bde;c(p) + Ra
bec;d(p) = 0. (1.7)

‘óπερ ’έδει δε�ιξαι

1Riemann normal coordinates are constructed geometrically as follows: in a sufficiently small neighbourhood about p,
every point can be reached by traversing a certain geodesic through p a certain distance. If we choose to define all families
of geodesics through p using the same affine parameter λ then if we fix λ, there is a (smooth) bijection between tangent
vectors in TpM to points in the neighbourhood about p: the direction of v ∈ TpM tells the direction to the nearby points
and its magnitude (for fixed λ) tells the distance to travel along the geodesic. Needless to say this construction does not
require a metric.

1



2 JACOB LEWIS BOURJAILY

Problem 2
We are to compute the Riemann tensor, the Ricci tensor, the Weyl tensor and the scalar curvature

of a conformally-flat metric,
gab(x) = e2Ω(x)ηab. (2.1)

Using the definition of the Christoffel symbol with our metric above, we find

Γa
bc =

1
2
gam {gam,b + gbm,a − gab,m} ,

=
1
2
e−2Ωηam

{
ηbme2Ω∂cΩ + ηcme2Ω∂bΩ− e2Ωηbc∂mΩ

}
,

∴ Γa
bc = δa

b ∂cΩ + δa
c ∂bΩ− ηbcη

am∂mΩ. (2.2)
Using this together with the (definition of the) Riemann tensor’s components

Ra
bcd = Γa

bd,c − Γa
bc,d + Γm

bdΓ
a
cm − Γm

bcΓ
a
dm, (2.3)

we may compute directly2,

Ra
bcd = δa

d∂c∂bΩ− ηbdη
am∂c∂mΩ− δa

c ∂b∂dΩ + ηbcη
am∂d∂mΩ− δa

d (∂bΩ) (∂cΩ) + ηbdη
am(∂cΩ)(∂mΩ)

− δa
d(∂cΩ)(∂bΩ)− δa

c (∂bΩ)(∂bΩ) + ηbcδ
a
dηmn(∂mΩ)(∂nΩ) + δa

c (∂bΩ)(∂dΩ)− ηbcη
am(∂dΩ)(∂mΩ)

+ δa
c (∂dΩ)(∂bΩ) + δa

d(∂bΩ)(∂cΩ)− ηbdd
a
cηmn(∂mΩ)(∂nΩ)− ηbdη

am(∂cΩ)(∂mΩ) + ηbdη
am(∂cΩ)(∂mΩ)

=
{

δm
b (δa

c δn
d − δa

dδn
c ) + ηbd (ηanδm

c − ηmnδa
c ) + ηbc (ηmnδa

d − ηanδm
d )

}
(∂mΩ) (∂nΩ)

+ (δa
d∂c − δa

c ∂d) ∂bΩ + ηam (ηbc∂d∂mΩ− ηbd∂c∂mΩ) .

‘óπερ ’έδει πoι�ησαι

It will be helpful to recast this into the form where all the indices are lowered. We can
do this by acting with the metric tensor. Doing so we find,

e−2ΩRabcd =
{

δm
b (ηacδ

n
d − ηadδ

n
c ) + ηbd (δn

a δm
c − ηacη

mn) + ηbc (ηadη
mn − δm

a δn
d )

}
(δmΩ)(δnΩ)

+ ηad∂c∂bΩ− ηac∂d∂bΩ + ηbc∂d∂aΩ− ηbd∂c∂aΩ,

=
{

ηadδ
m
b δn

c − ηacδ
m
b δn

d + ηbcδ
m
a δn

d − ηbdδ
m
a δn

c

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
ηadηbc − ηacηbd

)
ηmn(∂mΩ)(∂nΩ).

(2.4)

Although we will not have any use for such frivolities, we can further compress this
expression to

e−2ΩRabcd = 4δr
[a δn

b]δ
s
[d δm

c]ηrs

(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
ηadηbc − ηacηbd

)
ηmn(∂mΩ)(∂nΩ). (2.5)

Now, we can then find the Ricci tensor by acting on equation (2.4) with gac. Letting D
be the dimensionality of our manifold, we find

Rbd =
{

δm
d δn

b −Dδm
d δn

b + δm
d δn

b − ηbdη
mn

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+ ηmn

(
ηbd −Dηbd

)
(∂mΩ)(∂nΩ),

=(2−D)
(
∂b∂dΩ− (∂bΩ)(∂dΩ)

)
+ (2−D)ηbdη

mn(∂mΩ)(∂nΩ)− ηbdη
mn∂m∂nΩ. (2.6)

‘óπερ ’έδει πoι�ησαι

Lastly, contracting this, we find the scalar curvature,

e2ΩR =(2−D)ηmn
(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+ D(2−D)ηmn(∂mΩ)(∂nΩ)−Dηmn∂m∂nΩ,

=2(1−D)ηmn∂m∂nΩ− (2−D)(1−D)ηmn(∂mΩ)(∂nΩ). (2.7)
‘óπερ ’έδει πoι�ησαι

2To be absolutely precise, there are two terms which manifestly cancel that appear when expanding this expression,
which we have left out for typographical and aesthetic considerations.
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All that remains for us to compute is the Weyl tensor. Any exposure to conformal
geometry immediately tells us that the Weyl tensor vanishes. That is, that

Rabcd =
1

(D − 2)

(
gacRdb + gdbRac − gadRbc − gbcRad

)
− 1

(D − 1)(D − 2)
R

(
gacgdb − gadgbc

)
. (2.8)

We will try as hard as possible to avoid actually computing the right hand side by
expanding our expressions above. To show that the Weyl tensor vanishes, we must
build Rabcd out of Rbc, R and the metric gab. This statement alone essentially gives
us the expression at first glance.

The first important thing to notice is that Rabcd has no term proportional to ηmn∂m∂nΩ
while both Rab and R do. This means that if Rabcd can only be composed of linear
combinations of Rab and R which do not contain ηmn∂m∂nΩ. Looking at expressions
(2.4) and (2.6), we see that they can only appear in the combination

Rbd +
e2Ωηbd

2(1−D)
R = Rbd +

gbd

2(1−D)
R. (2.9)

Any multiple of this combination will automatically have no ηmn∂m∂nΩ contribution.
Staring a bit more at equations (2.4) and (2.6), we notice that the first set of terms in

(2.4) are all of the form gacRbd. Indeed, we see that
1

2−D

{
ηadRbc−ηacRbd+ηbcRad−ηbdRac

}
=

{
ηadδ

m
b δn

c−ηacδ
m
b δn

d +ηbcδ
m
a δn

d−ηbdδ
m
a δn

c

}(
∂m∂nΩ−(∂mΩ)(∂nΩ)

)
+. . . .

(2.10)
Notice that multiplying both sides of the above equation by e2Ω will convert all of
the ηab’s into gab’s3 . This is all we need to construct the Riemann tensor from the
Ricci tensor and scalar curvature: knowing the combination of Ricci tensors which
gives part of the Riemann tensor, we can use (2.9) to determine the rest. Indeed, we
see that

Cabcd + Rabcd =
1

2−D

{
gabRbc − gadRbd + gbcRad − gbdRac

}
+

R

2(1−D)(2−D)

(
gadgbc − gacgbd + gbcgad − gbdgac

)
,

=
1

D − 2

{
gacRbd − gadRbc − gbcRad + gbdRac

}
− R

(D − 1)(D − 2)

(
gacgbd − gadgbc

)
,

=
{

gadδ
m
b δn

c − gacδ
m
b δn

d + gbcδ
m
a δn

d − gbdδ
m
a δn

c

}(
∂m∂nΩ− (∂mΩ)(∂nΩ)

)
+

(
gadgbc − gacgbd

)
gmn(∂mΩ)(∂nΩ),

=Rabcd;

∴ Cabcd = 0. (2.11)
‘óπερ ’έδει πoι�ησαι

3The conversion from ηab → gab is completely natural. The only possibly non-trivial step comes from the last term
in the expression (2.4) for the Riemann tensor: bringing e2Ω to the right hand side of (2.4), we have a term which has
two lowered ηab’s and one upper ηab; now, e2Ωηmn = e4Ωgmn and how these two factors of e2Ω can be absorbed into the
lowered η’s as desired.
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Problem 3
We are to show that if ϕ(x) satisfies the flat-space, massless Klein-Gordon equation, then if gab =

e2Ω(x)ηab, the transformed field eβΩ(x)ϕ(x) ≡ ϕ′(x) satisfies the equation

gabϕ′;ab − αRϕ′ = 0, (3.1)

for appropriate values of α and β—dependant on the spacetime dimension but independent of Ω(x).

Let us agree to call ¤ ≡ ηab∂a∂b. Then the flat-space Klein-Gordon equation is sim-
ply ¤ϕ(x) = 0. Recall the expression for the scalar curvature R in D spacetime
dimensions for a metric which is conformally-related to the Minkowski metric (2.7):

R = 2(1−D)e−2Ω¤Ω− (2−D)(1−D)e−2Ωηmn(∂mΩ)(∂nΩ). (3.2)

We would like to explicitly state gab∇b∇a in terms of ¤ and Ω. This can be done quite
explicitly, recalling the Christoffel symbols for a conformally-flat spacetime(2.2),

gab∇b∇a = gab∂a∂b − gabΓc
ab∂c,

= e−2Ω
{

¤− ηab
(
δc
a(∂bΩ)∂c + δc

b(∂aΩ)∂c − ηabη
cm(∂mΩ)∂c

)}
,

= e−2Ω
{

¤− ηcb(∂bnΩ)∂c − ηac(∂aΩ)∂c + Dηcm(∂mΩ)∂c

}
,

= e−2Ω
{

¤− (D − 2)ηab(∂aΩ)∂b

}
.

Acting with gab∇b∇a on ϕ′ we find,

gab∇b∇aϕ′ = e−2Ω
{

¤
(
eβΩϕ

)
+ (D − 2)ηab(∂aΩ)

(
∂b

(
eβΩϕ

)) }
,

= e−2Ω
{

βϕ′¤(Ω) + β(β + D − 2)ϕ′ηab(∂aΩ)(∂bΩ) + 2βeβΩηab(∂aϕ)(∂bΩ) + (D − 2)eβΩηab(∂aϕ)(∂bΩ)
}

.

Although only one equation, if (3.1) is to hold for arbitrary Ω(x), there are actually
three constraints implied by (3.1)—one for each functionally distinct contribution.
Actually, we’ll find that there are only two independent conditions—just enough to
uniquely determine α and β.

First, notice that R does not contain any derivatives of ϕ(x). Therefore equation (3.1)
implies that

2βeβΩηab(∂aϕ)(∂bΩ) + (D − 2)eβΩηab(∂aϕ)(∂bΩ) = 0, (3.3)

arising from the gab∇b∇aϕ′ term in (3.1). This obviously implies that

∴ β = −D − 2
2

. (3.4)

The next condition(s) come form matching the remaining two functionally distinct terms
in (3.1), namely4

gab∇b∇aϕ′−αRϕ′ ∝ β¤Ω+β(β+D−2)ηab(∂aΩ)(∂bΩ)−2α(1−D)¤Ω+α(D−2)(D−1)ηab(∂aΩ)(∂bΩ).
(3.5)

Matching the corresponding terms, we see that

α =
β

2(1−D)
and α =

−β(β + D − 2)
(D − 2)(D − 1)

. (3.6)

We see that β = 1
2 (D−2) is consistent with both of these—more concretely, any two

of these three constraints is sufficient to imply the third. Therefore, we have shown
that ϕ′ = eβΩϕ will satisfy the modified Klein-Gordon equation (3.1) for any Ω(x) if

∴ β =
2−D

2
and α =

1
4

D − 2
D − 1

. (3.7)

‘óπερ ’έδει πoι�ησαι

4We are not including those pieces eliminated by the choice (3.4).



Physics , General Relativity
Homework 

Due Wednesday, th November 

Jacob Lewis Bourjaily

Problem 11

We are asked to determine the ratio of frequencies observed at two fixed2 points in a spacetime with
a static metric gab; we should use this to determine the redshift of light emitted from the surface of the
Sun which is observed on the surface of the Earth.

Imagine a clock at a fixed point x1 which ticks with a regular interval ∆s. Because the
point is stationary, we may use the definition of the spacetime metric gab to see that
this interval is related to the coordinate time interval ∆t by3

∆s2 = ∆t21g00(x1). (1.1)

We have included a subscript on the coordinate time interval to make its position-
dependence manifest. The invariant interval ∆s, however, must certainly be position-
independent for any reliable clock. Therefore, we naturally have that

∆s2 = ∆t21g00(x1) = ∆t22g00(x2), (1.2)

for any other point x2. This implies that

∴ ∆t21
∆t22

=
g00(x2)
g00(x1)

. (1.3)

It is important to note that this discussion is not limited to clocks ticking regularly: any
process with a well-defined, constant time interval observed at two distinct points
will obey equation (1.3). Indeed, consider an atomic transition which emits photons
with frequency ν1 ≡ 1

∆t1
at point x1. Equation (1.3) implies that the frequency at

x1 will be related to the frequency ν2 at x2 by

∴ ν2

ν1
=

√
g00(x2)
g00(x1)

. (1.4)

‘óπερ ’έδει πoι�ησαι

To determine the redshift of light emitted from the Sun and observed on the Earth we
recall that in the Newtonian (weak-field) approximation,

g00(x) = −1− 2ϕN (x), (1.5)

where ϕN (x) is the Newtonian potential at x. The only subtlety is that we should
make sure to be careful about units when computing ϕN (x). Notice that because
the ‘1’ in −1− 2ϕN (x) is dimensionless, so should ϕN (x) be. This will be the case if
we judiciously set c = 1. In these units, we find

ϕN (R¯) = −2.12× 10−6 and ϕN (R⊕) = −1.06× 10−8, (1.6)

which gives a redshift of 2.11 parts per million.

1Note added in revision: this solution is bad. The argument presented for equation (1.4) is not valid (even though the
right answer emerges). One should be very careful about the thought experiment under consideration (because the inverse
result is easy to obtain under a different situation).

2The equation which the problem set asks us to demonstrate is only valid for stationary sources and observers—otherwise
there would be a doppler-shift term obfuscating the equation.

3In his textbook, Weinberg has an interesting discussion on why it is fundamentally not possible to disentangle ∆s from
∆t at a particular point. However, it is possible to compare the metric at two distinct points—by observing a gravitational
redshift—as described presently.

1



2 JACOB LEWIS BOURJAILY

Problem 2
We are to find the ‘natural’ generally covariant generalization of the flat-space Klein-Gordon La-

grangian (which was shown to be Weyl invariant in the last problem set). We should use this to
determine the matter stress-energy tensor and show that it is traceless.

The striking similarity between

gab∇a∇bϕ− 1
6
Rϕ = 0, (2.1)

and the massive Klein-Gordon equation makes us guess that the action from which
this is derived is

S =
1
2

∫
d4x

√−ggab

(
∇aϕ∇bϕ +

1
6
Rabϕ

2

)
. (2.2)

Our intuition is confirmed by calculating the equation of motion:

0 = ∇a

(
∂L

∂∇aϕ

)
− ∂L

∂ϕ
= ∇a

(
gab∇bϕ

)− 1
6
Rϕ,

= gab∇a∇bϕ− 1
6
Rϕ. (2.3)

Therefore the action (2.2) does indeed give rise to the desired equation of motion for
ϕ as desired.

We now must compute the stress-energy tensor for this matter Lagrangian. Recall that
the stress-energy tensor T ab of a system with action S is defined according to

δS =
1
2

∫
d4x

√−g T abδgab, (2.4)

from the variation gab 7→ gab + δgab. To compute the metric variation for the action
given in (2.2) we first recall some useful identities:

δgab = −gacgbdδgcd; δ(
√−g) =

1
2
√−ggabδgab; (2.5)

and gabδRab = ∇awa, where wa ≡ ∇b (δgab)− gcd∇a (δgcd) . (2.6)

This last identity, (2.6), follows from work done in lecture. Although brevity tempts
us to simply quote Wald’s textbook, it is sufficiently important to warrant a full
derivation. Therefore, to please the reader, a proof of this identity has been included
as an Appendix to this problem set.

We are now prepared to compute the metric variation of the action (2.2). As we proceed,
any total divergence will be assumed to integrate to zero.

δS =
1
2

∫
d4x

√−g

{
1
2
gabδgabg

cd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
+ δgab

(
∇aϕ∇bϕ +

1
6
Rabϕ

2

)
+

1
6
gabδRabϕ

2

}
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
+

1
6
gcdδRcdϕ

2

]
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
+

1
6

(∇cwc)ϕ2

]
,

=
1
2

∫
d4x

√−g

[
δgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)}
− 1

6
(∇cϕ2

)
wc

]
.

(2.7)

The last term in the expression above is qualitatively different from the first two. Let
us try to recast it into a form which makes the δgab-dependence manifest. Using the
definition of wc and making repeated use of integration by parts, we see∫

d4x
√−g ∇a(ϕ2)wa =

∫
d4x

√−g ∇a(ϕ2)
(
∇b (δgab)− gcd∇a (δgcd)

)
,

=
∫

d4x
√−g

(
∇b

(
δgab∇a(ϕ2)

)
− δgab∇b

(
∇a(ϕ2)

)
− gcd∇a

(
δgcd∇a(ϕ2)

)
+ gabδgab∇c

(
∇c(ϕ2)

))
,

=
∫

d4x
√−g δgab

(
gabgcd∇c∇dϕ

2 −∇a∇bϕ2
)
. (2.8)
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We are now ready to put everything together and find T ab. To make our result a bit
more transparent, let us agree to call gcd∇c∇d ≡ 2. Also, the identity gcd∇cϕ∇dϕ =
1
22ϕ2 − ϕ2ϕ will allow us to tidy up our expressions substantially. Combining all
of this, we can continue our work on the total variation (2.7) using the result from
(2.8) to find

δS =
1
2

∫
d4x

√−gδgab

{
1
2
gabgcd

(
∇cϕ∇dϕ +

1
6
Rcdϕ

2

)
−

(
∇aϕ∇bϕ +

1
6
Rabϕ2

)
− 1

6

(
gabgcd∇c∇dϕ

2 −∇a∇bϕ2
)}

,

=
1
2

∫
d4x

√−gδgab

{
1
2
gabgcd

(
∇cϕ∇dϕ− 1

3
∇c∇dϕ

2 +
1
6
Rcdϕ

2

)
−∇aϕ∇bϕ− 1

6
Rabϕ2 +

1
6
∇a∇bϕ2

}
,

=
1
2

∫
d4x

√−gδgab

{
1
2
gab

(
1
6
2ϕ2 +

1
6
Rϕ2 − ϕ2ϕ

)
− 1

3
∇a∇bϕ2 + ϕ∇a∇bϕ− 1

6
Rabϕ2

}
. (2.9)

This allows us to read-off

∴ T ab =
1
2
gab

(
1
6
2ϕ2 +

1
6
Rϕ2 − ϕ2ϕ

)
− 1

3
∇a∇bϕ2 + ϕ∇a∇bϕ− 1

6
Rabϕ2. (2.10)

‘óπερ ’έδει πoι�ησαι

As anyone who’s seen conformal field theory knows, the trace of the stress-energy tensor
must vanish. Let’s see how this ‘magically’ works out in the situation considered
presently.

gabT
ab =

1
3
2ϕ2 +

1
3
Rϕ2 − 2ϕ2ϕ− 1

3
2ϕ2 + ϕ2ϕ− 1

6
Rϕ2,

=
1
6
Rϕ2 − ϕ2ϕ,

= −ϕ

(
2ϕ− 1

6
Rϕ

)
,

= 0.

Notice that the last line required using the equations of motion—which wasn’t entirely
anticipated—at least by us.
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Problem 3: Killing Vectors

a. If ζa(x) is a Killing field and pa(λ) is the tangent vector to a geodesic curve γ(λ), then paζa(x)
is constant along γ.

proof: The derivative of paζa along γ is

pb∇b (paζa) = papb∇bζa + ζapb∇bp
a. (3.1)

The first term vanishes because papb is symmetric while ∇bζa is antisymmetric (be-
cause it is Killing). The second term vanishes because pa is the tangent of a ge-
odesic, which practically by definition implies that it obeys the geodesic equation,
pb∇bp

a = 0. ‘óπερ ’έδει δε�ιξαι

b. We are to list the ten independent Killing fields of Minkowski spacetime.

The ten independent Killing fields correspond to the ten generators of the Poincaré
algebra: four translations, three rotations, and three boosts. Given in terms of the
basis vectors ~ea, we the Killing vector fields are therefore

Translations : ~et, ~ex, ~ey, ~ez;

Rotations : y~ex − x~ey, z~ey − y~ez, x~ez − z~ex;

Boosts : x~et + t~ex, y~et + t~ey, z~et + t~ez;

Each of these ten vector fields manifestly satisfies Killing’s equation. That they are
linearly independent is also manifest4.

c. If ζa and ηa are Killing fields and α, β constants, then αζa + βηa is Killing.
proof: As should be obvious to all but the most casual observer,

∇b (αζa + βηz) = α∇bζa + β∇bηa = −α∇aζb − β∇aηb = −∇a (αζb + βηb) , (3.2)

because, being constants, α, β commute with the gradient and ζa, ηa are Killing.
Therefore equation (3.2) implies that (αζa + βηa) is Killing. ‘óπερ ’έδει δε�ιξαι

d. We are to show that Lorentz transformations of the Killing vector fields listed in part (b) above
give rise to linear recombinations of the same fields with constant coefficients.

Because every Lorentz transformation can be built from infinitesimal ones, it is sufficient
to demonstrate the claim for infinitesimal Lorentz transformations. And this makes
our work exceptionally easy. Infinitesimal Lorentz transformations are simply the
identity plus a constant multiple of the generators of the Lorentz algebra; but (the last
six of) the Killing fields listed in part (b) are nothing but these Lorentz generators.

Therefore, any infinitesimal Lorentz transformation of the Killing fields listed in part (b)
is a linear combination of those same Killing fields with constant coefficients. And
by extension, the same is true for any finite Lorentz transformation.

4Although we should add that we were not requested to demonstrate this—so our lack of exposition here should be
forgiven.
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Appendix

In problem 2 we made use of an identity that didn’t obviously follow from the work in lecture. We
remedy that deficiency presently5.

Lemma: Under the variation gab 7→ gab + δgab,

gabδRab = ∇awa, where wa ≡ ∇b (δgab)− gcd∇a (δgcd) . (A.1)

proof: We may begin with the related expression derived in lecture,

gabδRab = ∇a

(
gbcδΓa

bc − gacδΓb
cb

)
. (A.2)

Rearranging this we find

gabδRab = ∇a
{

gbcgadδΓd
bc − δΓd

ad

}
; (A.3)

therefore, it suffices to show that the term in brackets is equal to wa. Expanding this
expression and using symmetry to collect and cancel terms, we find

gbcgadδΓd
bc − δΓd

ad =
1
2
gbcgadδg

de
(
gbe,c + gce,b − gbc,e

)
+

1
2
gbcδe

a

(
δgbe,c + δgce,b − δgbc,e

)

− 1
2
δgbe

(
gae,b + gbe,a − gab,e

)
− 1

2
gbe

(
δgae,b + δgbe,a − δgab,e

)
,

=− 1
2
gbcgefδd

aδgde

(
gbf,c + gcf,b − gbc,f

)
+

1
2
gbc

(
δgba,c + δgca,b − δgbc,a

)
+

1
2
δgdeg

dcgefgcf,a − 1
2
gbeδgbe,a,

=− gbcgefδd
aδgdegbf,c − 1

2
gbcgefδd

aδgdegbc,f + gbcδgba,c − 1
2
gbcδgbc,a +

1
2
δgdeg

dcgefgcf,a − 1
2
gbcδgbc,a,

=gbcδgba,c − gbcδgbc,a − gbcgefgbf,cδgae − 1
2
gbcgefgbc,fδgae +

1
2
gdcgefgcf,aδgde.

Expanding the first two terms in the expression above in terms of covariant derivatives
and Christoffel symbols, we observe

gbcδgab,c = ∇b (δgab) + gbcδgebΓe
ac + gbcδgaeΓe

bc, (A.4)

and
gbcδgbc,a = gbc∇a (δgbc) + gbcδgbeΓe

ac + gbcδgecΓe
ba. (A.5)

Noting that the terms with the covariant derivatives are what we are looking for—
together, they give wa. Putting everything together,

gbcgadδΓd
bc − δΓd

ad = wa +
{

gbcδgaeΓe
bc − gbcδgecΓe

ba + gbcgef

(
1
2
gfc,aδgbe +

1
2
gbc,fδgae − gbf,cδgae

)}
.

(A.6)
All that remains is for us to show that the terms in curly brackets above vanish. To do

this, we will expand our expressions one last time—this time using the definition of
the Christoffel symbols for a metric connection. Doing so, we find

gbcgadδΓd
bc − δΓd

ad − wa = gbcgef

{
1
2
gfc,aδgbe +

1
2
gbc,fδgae − gbf,cδgae

− 1
2
gbf,aδgec − 1

2
gaf,bδgec +

1
2
gba,fδgec

+
1
2
gbf,cδgae +

1
2
gcf,bδgae − 1

2
gbc,fδgae

}
,

= 0.

Here we have indicated the terms that cancel together in matching colours. With
this, we have shown that

∴ gabδRab = ∇a
{

gbcgadδΓd
bc − δΓd

ad

}
= ∇a

{
∇b (δgab)− gcd∇a (δgcd)

}
= ∇awa. (A.7)

‘óπερ ’έδει δε�ιξαι

5We hope that there is an easier way to prove the following Lemma. But alas! too little time to be brief. Breviloquence
is a time-consuming luxury.





Physics , General Relativity
Homework 

Due Wednesday, th December 

Jacob Lewis Bourjaily

Problem 1
Consider a gyroscope moving in circular orbit of radius R about a static, spherically-symmetric planet

of mass m.
a. We are to derive the equations of motion for the gyroscopic spin vector as a function of azimuthal

angle and show that the spin precesses about the direction normal to the orbital plane.

This calculation will be far from elegant, and will probably not give rise to much insight.
Nevertheless, we start by recalling the Lagrangian describing a particle’s worldline(in
the θ = π

2 plane) in a static, isotropic spacetime,

L = −gabu
aub = f(r)(ut)2 − 1

f(r)
(ur)2 − r2(uϕ)2, (1.1)

where ua ≡ dxa

dτ for some affine parameter τ . Because our analysis will be limited
to circular geodesics, we will not have much use for the ur coordinate; however,
its equation of motion will be necessary to relate the various integrals of motion.
First observe that uϕ is non-dynamical in the Lagrangian and so it gives us our first
integral of motion,

J ≡ r2uϕ. (1.2)

For circular geodesics, ua will of course only have 0 and ϕ components; ut is also non-
dynamical, and so we are free to set ut by the normalization of the affine parameter
τ :

u2 = −gabu
aub = f(R)(ut)2 − J2

R2
≡ 1, =⇒ ut =

√
1

f(R)

(
1 +

J2

R2

)
. (1.3)

Now, it is easy to see that the equation of motion for the r-component is

−2
r̈

f(r)
+ 2

ṙ2

f2(r)
f ′(r) = − ṙ2

f2(r)
− 2

J2

r3
+ f ′(r)(ut)2. (1.4)

Because we are looking for solutions where both ṙ and r̈ vanish—and r = R—we see
at once that this implies the relation

J2 =
1
2
f ′(R)(ut)2R3 =

m

R2

R4

(R− 2m)

(
1 +

J2

R2

)
,

=
mR2

R− 2m

1
1− m

R−2m

,

=
mR2

R− 3m
. (1.5)

Above, we made use of the definition of the Schwarzschild metric’s f(r) = 1 − 2m
r .

We have now completely specified the circular geodesic of radius R in which we are
interested.

The direction of a gyroscope’s spin is therefore simply a vector Sa which satisfies the
orthogonality condition uaSbgab = 0 along the geodesic. Recall that two parallelly-
transported vectors have the property that the gradient of their scalar product van-
ishes. This immediately allows us to write down the equation for the evolution of
the components of Sa along τ ,

dSa

dτ
= Γb

acSbu
c, (1.6)

1
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which, upon using the Christoffel symbols for the Schwarzschild metric1, becomes

dSt

dτ
= Γr

ttSru
t =

1
2
f(R)f ′(R)Sru

t =
1
2

√
1

f(R)

(
1 +

J2

R2

)
Sr; (1.7)

dSr

dτ
= Γt

rtStu
t + Γϕ

rϕSϕuϕ =
f ′(R)
2f(R)

√
1

f(R)

(
1 +

J2

R2

)
St +

J

R3
Sϕ; (1.8)

dSθ

dτ
= Γϕ

θϕSϕuθ + Γθ
θrSθu

r + Γr
θθSru

θ = 0; (1.9)

dSϕ

dτ
= Γθ

ϕϕSθu
ϕ + Γr

ϕϕSru
ϕ = − J

R
f(R)Sr. (1.10)

This almost completes our analysis. Indeed, notice that the above system of equations
implies that the θ-component of the gyroscope’s spin is fixed. All the motion of Sa

as it is transported along τ is confined to the plane normal to θ̂. Therefore, we may
conclude that the gyroscope will precess about the axis normal to its orbital plane.

The finicky reader may object that the system of equations (1.6-9) are over-specified. To
be thorough we should eliminate redundancy. The first of the relations among these
expressions comes from the orthogonality condition on the spin vector Saua = 0. In
components this reads

Stu
t + Sϕuϕ = 0 =⇒ St

√
1

f(R)

(
1 +

J2

R2

)
= − J

R2
Sϕ. (1.11)

Also, it is more physically interesting to compute evolution relative to the angle ϕ as
observed by a stationary observer on the planet. Replacing St in favour of Sϕ and
making us of the fact dτ

dϕ = R2

J ,

dSt

dϕ
=

R2

2J

√
1

f(R)

(
1 +

J2

R2

)
Sr;

dSr

dϕ
=

(
1
R
− f ′(R)

2f(R)

)
Sϕ;

dSϕ

dϕ
= −Rf(R)Sr;

dSθ

dϕ
= 0.

The last redundancy to take care of comes from the geodesic equation for SaSbgab—
namely, that this scalar is preserved. Let us choose to normalize SaSbgab = +1 so
that

1 = − 1
f(R)

S2
t + f(R)S2

r +
1

R2
S2

θ +
1

R2
S2

ϕ,

=
1

R2
S2

ϕ

(
1− J2

R2

1(
1 + J2

R2

)
)

+ f(R)S2
r +

1
R2

S2
θ ,

=
S2

ϕ

(R2 + J2)
+ f(R)S2

r +
1

R2
S2

θ .

Bearing in mind that Sθ is a constant of motion, me may therefore write

S2
ϕ = f(R)

(
R2 + J2

) (
1

f(R)
− 1

f(R)R2
S2

θ − S2
r

)
or S2

r =
1

f(R) (R2 + J2)

(
(R2 + J2)− (R2 + J2)

R2
S2

θ − S2
ϕ

)
.

(1.12)
The two substantive equations of motion are clearly dSr

dϕ and dSϕ

dϕ . Squaring the equations
derived above, and using the normalization condition to reexpress unlike components,

1And specializing to the obvious coordinate choice θ 7→ π
2

everywhere it is encountered.
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we find(
dSr

dϕ

)2

=
(

1
R
− f ′(R)

2f(R)

)2

f(R)
(
R2 + J2

) (
1

f(R)
− 1

f(R)R2
S2

θ − S2
r

)
, (1.13)

(
dSϕ

dϕ

)2

= R2f(R)2
1

f(R) (R2 + J2)

(
(R2 + J2)− (R2 + J2)

R2
S2

θ − S2
ϕ

)
. (1.14)

Despite how horrendous these equations look at first glance, the structure present is very
simple. Notice that any function g(ϕ) ≡ α cos(βϕ) (or g(ϕ) = α sin(βϕ)) satisfies
the differential equation

(
d

dϕ
α cos(βϕ)

)2

=
(

dg

dϕ

)2

= β2
(
α2 − g2(ϕ)

)
. (1.15)

The initial conditions will determine the coefficients β, α, but the general result is
now complete2.

b. If the gyroscope studied in part (a) is observed to have its spin entirely in the orbital plane, then
how much precession is observed? What is the precession observed in the case of a satellite in low-earth
orbit?

When we finished part (a), we had done everything necessary to determine the precession
of a gyroscope in circular orbit given suitable boundary conditions. In the case of
a gyroscope with spin lying in its orbital plane, Sθ = 0. This greatly simplifies our
algebra. Let us proceed to simplify the expressions (1.13) and (1.14).

Using the expression for the angular momentum J (1.5) derived above, expanding, and
collecting terms, we find

(
dSr

dϕ

)2

=
(2f(R)−Rf ′(R))2

4R2f(R)
(
R2 + J2

) (
1

f(R)
− S2

r

)
,

=
(2f(R)−Rf ′(R))2

4R(R− 2m)
R2 (R− 2m)

(R− 3m)

(
1

f(R)
− S2

r

)
,

=
(R− 2m−m)2

R

1
(R− 3m)

(
1

f(R)
− S2

r

)
,

=
R− 3m

R

(
1

f(R)
− S2

r

)
.

As described in part (a), a solution to this differential equation is of the form
α cos(βϕ).If we define ϕ so that Sr is maximum when ϕ = 0, we have

∴ Sr(ϕ) =

√
R

R− 2m
cos

(√
R− 3m

R
ϕ

)
. (1.16)

‘óπερ ’έδει πoι�ησαι

We can follow the same analysis, or simply differentiate this to obtain Sϕ. Either way,
one finds that

∴ Sϕ(ϕ) = −R

√
R− 2m

R− 3m
sin

(√
R− 3m

R
ϕ

)
. (1.17)

‘óπερ ’έδει πoι�ησαι

Using the fact that Sa is a unit covector, we know that the angle between Sa(0) and
Sa(2πn) after n orbits will be given by

cos(ϑ) = f−1(R)f(R) cos

(√
R− 3m

R
2πn

)
, or, ϑ = 2πn

√
R− 3m

R
, (1.18)

which is well-approximated by

δϑ ' 3m

R
πn. (1.19)

For a low-earth orbit satellite in circular motion, we therefore expect the gyroscopic
precession to be on the order of 1.66× 10−9 degrees per orbit.

2If you had hoped to see us simplify these expressions enormously, please read our solution to part (b) below.



4 JACOB LEWIS BOURJAILY

Problem 2
Consider a +-dimensional AdS spacetime described by the metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

3, where f(r) = 1 + r2 − µ

r2
. (2.1)

We are to determine the radial coordinate of the black hole horizon, calculate the proper time of a
massive object to free-fall from the surface of the black hole to the singularity at r = 0, and determine
the radius and period of the null-circular orbit.

The horizon radius is that for which f(r) vanishes. A child’s experience with the qua-
dratic formula is sufficient to see that there is exactly one real root of f(r) and this
corresponds to a horizon radius of

∴ rh =

√
1
2

(√
4µ2 + 1− 1

)
. (2.2)

‘óπερ ’έδει πoι�ησαι

To calculate the proper time for free-fall from the horizon, we need to quickly derive
the equations for motion in only the r-direction. Because we’ll need the angular
dependence later, we’ll start a bit more generally. First, look at the Lagrangian for
the particle’s motion (its worldline),

L = −gabu
aub = f(r)ṫ2 − 1

f(r)
ṙ2 − r2ϕ̇2. (2.3)

Now, as always, a ‘˙’ indicates differentiation with respect to an affine parameter, say
τ , along the worldline of the particle. We will eventually impose the normalization
condition (think Lagrange multipliers)

κ ≡ −gabu
aub, (2.4)

where κ = 1 for time-like worldlines and κ = 0 for null. The first thing that should
be apparent form the Lagrangian is that there are two non-interacting degrees of
freedom, ṫ and ϕ̇, giving rise to two integrals of motion3

E ≡ f(r)ṫ, and J ≡ r2ϕ̇. (2.5)

Now, in the case of purely radial motion of a massive object, J = 0 and κ = 1; so we
are left with only

1 =
1

f(r)
E2 − 1

f(r)
ṙ2, =⇒ ṙ2 = E2 − f(r). (2.6)

Notice that this means that E must be chosen so that ṙ2 = 0 = E2 − f(R) for some R.
In the problem under consideration, we want to find the motion of an object dropped
from rest at R = rh—and rh is defined to be such that f(rh) = 0. Therefore, E2 = 0
for our present problem, and

dr

dτ
=

√
−f(r); (2.7)

which is easy enough to formally invert:

τ =
∫ rh

0

dr√
−f(r)

. (2.8)

Our computer algebra software had no difficulty evaluating this, showing that

∴ τ =
π

4
− 1

2
arccot (2

√
µ) . (2.9)

‘óπερ ’έδει πoι�ησαι

3We could have framed this discussion in terms of Killing fields, but we’ll stick to Euler while we can.
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Lastly, we are asked to find the radius at which light can orbit circularly, and determine
the coordinate time of this orbit’s period. To do this, we need only to re-instate J
into our expression for ṙ2 and set κ → 0 for null geodesics. Written suggestively, this
gives

1
2
ṙ2 +

1
2
f(r)

J2

r2
=

1
2
E2. (2.10)

Reminiscent of effective potentials, we are inspired to consider an analogue problem
in +-dimensions governed by the effective potential

Veff =
J2

2r2

(
1 + r2 − µ

r2

)
. (2.11)

This effective potential has only one turning point, at

−J2

r3
+ 2

µJ2

r5
= 0 =⇒ r =

√
2µ. (2.12)

‘óπερ ’έδει πoι�ησαι

This is the radius at which there are circular, null geodesics—as evidenced by the fact
that ṙ = 0 at this radius. Inserting r =

√
2µ into (2.10),

E2 = f(
√

2µ)
J2

2µ
= J2

(
1 +

1
4µ

)
=⇒ J2

E2
=

4µ

4µ + 1
. (2.13)

This is needed for us to compute the coordinate-time orbit period. Recall from our
definitions of E and J that

dϕ

dt
=

dϕ

dτ

dτ

dt
=

J

r2

f(r)
E

, (2.14)

—which when combined with the above implies

dϕ

dt
=

1
2

√
4µ + 1

µ
. (2.15)

This is trivially integrated. We find that the coordinate time of one orbit is

∴ tp = 4π

√
µ

4µ + 1
. (2.16)

‘óπερ ’έδει πoι�ησαι

Problem 3
Consider a clock in circular orbit at radius R = 10m about a spherically symmetric star.
a. We are to determine the proper time of the R = 10m orbit.

We can draw heavily on our work above. Using the notation and conventions of problem
one, we see that

τp =
∫

dτ =
∫

dτ

dϕ
dϕ =

R2

J

∫
dϕ = 2π

R2

J
.

Using our equation (1.5) for J at a given R, we find

∴ τp = 2π
R
√

R− 3m√
m

. (3.a.1)

‘óπερ ’έδει πoι�ησαι

For the particular question at hand, r = 10m, we find the period to be

τp = 20
√

7πm. (3.a.2)
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b. If once each orbit the clock transmits a signal to a distant observer, what time interval does
this observer observe?

The time coordinate t is precisely the time observed by a distant observer in Schwarzschild
geometry. Therefore, we simply modify the calculation above as follows.

tp =
∫

dt =
∫

dt

dτ

dτ

dϕ
dϕ = 2π

R2

J

√
1

f(R)

(
1 +

J2

R2

)
= 2π

R3/2

√
m

. (3.b.1)

‘óπερ ’έδει πoι�ησαι

We point out that this agrees identically with Kepler’s third law.
For R = 10m we find

tp = 20
√

10πm. (3.b.2)

c. If another observer is stationed in stationary orbit at R = 10m, what time do their clocks report
as the orbit period?

The proper time of a shuttle on a fixed distance from the origin is given by

∆τ2 =
(

1− 2m

R

)
∆t2 + 0; (3.c.1)

∴ τp =
2πR3/2

√
m

√
1− 2m

R
= 40

√
2π. (3.c.2)

d. We are to redux the calculation of part (b), this time for the case of an orbit at R = 6m where
m = 14M¯ and explain why this bound is interesting.

It is not very challenging to simply put real numbers into our calculation above; we find

tp = 2π
R3/2

√
m

= 2× 10−8 s. (3.d.1)

The reason why this is the minimum for fluctuations to be observed from x-ray sources
is that R = 6m is the minimum radius at which there is a stable circular orbit.

e. If forty years go by according to the watch of a distant observer, how long has passed on a spaceship
orbiting at R = 6m for m = 14M¯.

The one thing that both observers will agree on is that during the interval in question
the orbiting observer made 6.6× 1016 orbits; this was of course calculated using the
result of part (b) above. Using part (a), we learn that the person living inside the
orbiting spaceship observed 28 years pass to complete these 6.6× 1016 orbits.



Physics , General Relativity
Homework 

Due Wednesday, th December 

Jacob Lewis Bourjaily

Problem 1
Consider a flat FRW universe, governed by the metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (1.1)

filled with only relativistic material and a cosmological constant Λ; say the space has a big bang at
coordinate time t = 0. We are to calculate the cosmic scale factor a2(t) up to an overall normalization
and describe the asymptotic motion of photon travelling along the positive x̂-axis.

Let us begin by quickly reviewing the Einstein equations for this universe1. We note
that the components of the Ricci tensor and scalar curvature for this metric are

Rtt = 3
ä

a
, Rij = −δij

(
aȧ + 2ȧ2

)
, and R = −6

(
ä

a
+

ȧ2

a2

)
. (1.2)

And recall that a (single-component) perfect fluid with equation of state p = wρ has
a stress energy tensor given by

T a
b = ρ




−1 0 0 0
0 w 0 0
0 0 w 0
0 0 0 w


 . (1.3)

The Einstein field equations are then

Rab − 1
2
gabR = −8πG

(
Tab − Λ

8πG
gab

)
, (1.4)

where Λ is the cosmological constant2. Writing out the ‘tt’ Einstein equation, we find

3
ä

a
− 3

(
ä

a
+

ȧ2

a2

)
= −3

ȧ2

a2
= −8πG

(
ρ +

Λ
8πG

)
, (1.5)

which implies

∴ ȧ2 =
8πG

3
a2

(
ρ +

Λ
8πG

)
. (1.6)

It turns out that we won’t actually need any of the other Einstein equations.
The last equation we need relates the energy density to the cosmic scale factor. This

comes about from the conservation of energy3,
d

da

(
ρa3

)
= −3pa2. (1.7)

This equation is implied by the divergencelessness of Tab, which is itself just a re-
statement of the Bianchi identity for Gab.

At any rate, we can use the conservation of energy for a fluid with equation of state
p = wρ to determine how ρ varies as a function of a(t). We see

d

da

(
ρa3

)
= 3a2ρ + a3 dρ

da
= −3wρa2,

=⇒ dρ

da
= −3(1 + w)a−1ρ.

Solving this equation by simple integration, we have

log(ρ) = −3(1 + w) log(a) + const. =⇒ ρ ∝ a−3(1+w). (1.8)
‘óπερ ’έδει πoι�ησαι

1Because we are more familiar with the notation used by Weinberg—despite its oddities—our derivations will follow
his. However, we will use a(t) to denote the cosmic scale factor so as to avoid confusion with R.

2It is quite common to see Λ defined with the 8πG absorbed into its definition. We prefer to keep it structurally more
similar to the metric than the stress-energy (which follows from the paradigm that Λ is a metric parameter as opposed to
a vacuum energy).

3That this is a statement of the conservation of energy can be understood as follows: the amount of energy in a comoving
box of size a3 is just ρa3; because we consider only a perfect fluid, as the box expands, the only leakage arises from the
‘pressure’ at the sides of the box—which has surface area 6a2. However, only half of this is lost because only half of the
pressure along the faces of the box is due to ‘outgoing’ flow; so there is a net loss of 3pa2 worth of energy.

1
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Using the fact that a relativistic fluid has an equation of state w = 1
3 , we observe that

ρ =
3β2

8πG
a−4, (1.9)

where β2 is a constant of integration.
Putting this into the Einstein equation (1.6),

ȧ2 =
8πG

3
a2

(
3β2

8πG
a−4 +

Λ
8πG

)
=

1
a2

(
β2 +

Λ
3

a4

)
. (1.10)

This ordinary differential equation can be integrated directly4.

t =
∫ t

0

dt =

a∫

0

a′ da′√
β2 + Λ

3 a′4
=

√
3

4Λ
arcsinh

(
a2

β

√
Λ
3

)
;

∴ a2(t) = β

√
3
Λ

sinh

(
2t

√
Λ
3

)
. (1.11)

‘óπερ ’έδει πoι�ησαι

Let us now check that our solution agrees with the required boundary conditions. First,
a(t = 0) = 0, as required; this shows that we were not unjustified in our organization
of constants of integration when solving the differential equations above. Also, at
very early times or when Λ is very small,

a2(t) = β

√
3
Λ

sinh

(
2t

√
Λ
3

)
≈ 2βt, for t → 0, (1.12)

which is precisely what we would have obtained if setting Λ = 0 in (1.6). Similarly,
in late times

a2(t) ≈ β

√
3

4Λ
e2t
√

Λ/3, for t →∞, (1.13)

which is what we would have obtained if we had neglected the radiation density ρ
altogether in equation (1.6).

Now, the motion of a photon in this space is entirely controlled by the condition that
its worldline is null. For motion along the x̂-axis, this is simply the statement that

0 = −dt2 + a2(t)dx2, =⇒ dx =
dt

a(t)
. (1.14)

Again, this can be integrated—at least formally—so that if motion starts at the origin
at time t = 0 then

x(t) =

t∫

0

dt′

a(t′)
. (1.15)

Although this integral can be done analytically in terms of hypergeometric functions—
(what can’t?)—it is far from illuminating. Therefore, rather than computing the light
trajectory x(t) analytically for a generic two-component universe, let us analyze its
motion in the asymptotic regions of interest.

We showed above that for very early times,

a(t) ≈
√

2βt, =⇒ x(t) =
√

2
β

√
t. (1.16)

Comparing this with the notation of the problem set, we have
√

2
β

=
(

3
8πGB

)1/4

=⇒ B =
3β2

8πG
; (1.17)

so the problem set’s B is such that ρ = Ba−4—which we could have guessed.

4Several horrendous integrals appear in this problem set; most were solved with the aide of a computer algebra package.
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Alternatively, for late times we should use the approximation (1.13) which gives

∆x =
(

4Λ
3β2

)1/4 ∫ ti+∆t

ti

dt′ e−t′
√

Λ/3 =
(

12
β2Λ

)1/4

e−ti

√
Λ/3

(
1− e−∆t

√
Λ/3

)
. (1.18)

This implies that at late times the photon will essentially freeze it’s position—advancing
exponentially slower and slower as coordinate time goes to infinity. Indeed, if ti is a
time late enough5 for the universe to be virtually dominated by Λ, then within the
infinitude of time to the end of the universe, the photon will travel only the finite
distance

x(∞)− x(ti) =
(

12
β2Λ

)
e−ti

√
Λ/3. (1.19)

Problem 2
We are to study a closed FRW universe which is ‘radiation dominated for only a negligibly short

fraction of its life’ and determine how many times a photon released at the big bang can encircle the
universe before the big crunch. Although it is quite likely that the author of the problem had a mostly-
matter-dominant universe in mind, there are certainly other ways of interpreting the problem6. We will
consider here only the most obvious interpretation of the problem—the one of a universe with matter
and relativistic energy components.

Unfortunately, our analysis in problem 1 above was not sufficiently general to consider
a closed universe with the metric

ds2 = −dt2 + a2(t)
{

dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dϕ2

}
, (2.1)

where k = 1 for a closed universe. Therefore, we will need to quickly generalize that
discussion to include k 6= 0.

Notice that the coordinate ‘r’ here is not a radius in the sense of a usual spherical
geometry: by setting k = 1 we are forced to restrict r to the range r ∈ [−1, 1]—it is
an angular coordinate. Indeed, that k = 1 describes the geometry of a three-sphere
is made manifest by the change of variables r = sin(λ) so that the metric becomes

ds2 = −dt2 + a2(t)
(
dλ2 + sin2(λ)dθ2 + sin2(λ) sin2(θ)dϕ2

)
, (2.2)

which by inspection is the metric of a three-sphere with fixed radius a(t).
The only reason why we so digress is to clarify that fixed-λ and fixed-θ trajectories are

only geodesics when λ = θ = π/2—otherwise the orbit will not describe a great-circle
on the sphere. The moral is that if we would like to study simple photon geodesics
in a closed spacetime, we must set λ = θ = π/2—or, equivalently, we must set the
coordinate r → 1.

Now, let us return to the metric (2.1) and derive the Einstein field equations. If we write
the metric in the form

ds2 = −dt2 + a2(t)g̃jkdxjdxk, (2.3)

then we find that

Rtt = 3
ä

a
, Rij = −g̃ij

(
aȧ + 2ȧ2 + 2k

)
, and R = −6

(
ä

a
+

ȧ2

a2
+

k

a2

)
. (2.4)

Now, the universe under investigation has a stress-energy tensor which is the sum of
those for ‘radiation’ (w = 1

3 ) and ‘matter’ (w = 0) components. Therefore, like
above, the ‘tt’-Einstein equation is simply

3
(

ȧ2

a2
+

k

a2

)
= 8πG (ρm + ρr) , (2.5)

which implies

∴ ȧ2 =
8πG

3
a2 (ρm + ρr)− k, (2.6)

5This happens approximately when the small angle expansion of sinh breaks down: when t ∼
q

3
4Λ

.
6Consider, for example a universe with radiation and a w = − 1

2
quintessence field: such a universe would certainly

have the property that radiation is dominant for a negligibly short time in the early/late universe.
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where ρm and ρr are the densities of matter and radiation components of the universe,
respectively.

In problem 1 equation (1.8) we derived the relationship ρ ∝ a−3(1+w) using only the
conservation of energy for a perfect fluid. This therefore most certainly applies for
both matter and radiation components of the universe. Expressing the constants of
proportionality as

ρm =
2β

8πG
a−3 and ρr =

3ζ

8πG
a−4, (2.7)

the Einstein equation becomes

ȧ2 =
β

a
+

ζ

a2
− k. (2.8)

This differential equation is generally solvable in terms of hypergeometric functions, but
these are far from enlightening. Rather, we are told to consider the limit that the
universe is radiation-dominated for a vanishingly small fraction of its lifetime. This
is equivalent to considering ‘the age of the universe’ to consist almost entirely of that
time for which β/a À ζ/a2. In this limit, for a closed universe, we have

ȧ2 =
β

a
− 1. (2.9)

This differential equation can be solved by a clever trick: we know that 1. a(t) has
a maximum at a(t) = β—because then ȧ = 0—and 2. that a(t0) = a(tf ) = 0.
Therefore, we are free to parameterize a = β

2 (1 − cos η) for some new parameter η.
In terms of η, we find that

ȧ2 =
1

1− cos η
(2− 1 + cos η) =

1 + cos η

1− cos η
=

1− cos2 η

(1− cos η)2
=

sin2 η

(1− cos η)2
; (2.10)

∴ da

dt
=

sin η

1− cos η
. (2.11)

Notice that t and η are related by the equation
dt

dη
=

dt

da

da

dη
=

1− cos η

sin η

β

2
sin η =

β

2
(1− cos η) = a(η). (2.12)

We are now prepared to determine how many times a photon released at the big bang
can encircle the universe before the big crunch. As described above, geodesics which
encircle the universe are those for which r = 1, θ = π/2 in terms of the coordinates
of the metric (2.1). Therefore, the condition for a null light ray is simply

ds2 = 0 = −dt2 + a2(t)dϕ2, =⇒ dϕ =
dt

a(t)
. (2.13)

The total angular distance such a photon can travel during the total time of the universe
is then given by

ϕtot =
∫

dϕ =

t=tf∫

t=0

dt

a(t)
=

∫ 2π

0

dt

dη

dη

a(η)
=

∫ 2π

0

a(η)
a(η)

dη = 2π. (2.14)

‘óπερ ’έδει πoι�ησαι
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Problem 3
We are asked to study the asymptotic evolution of a universe filled with matter together with another

form of energy7, termed ‘quintessence’ with an ‘exotic’ equation of state pQ = wρQ.
a. We are to determine the equation of state for which quintessence energy density will eventually

dominate the universe.

In problem 1, we worked out the dependence of an energy density component in terms of
the cosmic scale factor function a(t) and the component’s equation of state w (1.8):

ρ ∝ a(t)−3(1+w). (3.b.1)

Matter, with equation of state wm = 0 is easily seen to evolve according to ρm ∝
a(t)−3. Therefore, any energy component with equation of state w < 0 will eventually
dominate over matter—as a(t) becomes sufficiently large at late times.

b. We are to solve for a(t) assuming a universe in which quintessence dominates, and find the condition
which the equation of state must satisfy so that a(t) remains finite for any finite time.

Assuming that that quintessence is the dominant source of energy density in the universe,
we may safely ignore the matter and radiation contributions to Einstein’s equation;
then, in accordance with (1.6) and (1.8), we find

ȧ2(t) =
8πG

3
a2ρQ ≡ β2a−(1+3w)(t). (3.c.1)

This implies ∫
a(1+3w)/2da = β

∫
dt. (3.c.2)

Now, there are three relevant cases to consider:
• If w > −1, this system can be integrated directly: setting a(0) = 08, we obtain

a(t) ∝ t2/(3(1+w)) for w > −1. (3.c.3)

• When w = −1, we have
∫ a

a0

da′

a′
= β

∫ t

0

dt′ = log
(

a(t)
a0

)
, =⇒ a(t) = a0e

βt for w = −1. (3.c.4)

Notice that this agrees with our results obtained above for a universe with a
cosmological constant (for which w = −1).

• The (pathological) case of w < −1, a bit more care must be taken to evaluate
the integral. We find

∫ a

a0

a′(1+3w)/2da′ = β, t =⇒ a(t) ∝
{

3(1 + w)
2

t + a
3(1+w)/2
0

}2/(3(1+w))

, (3.c.5)

and bearing in mind that w < −1, this has the structure of

a(t) ∝ 1

(η − ζt)1/ζ
for w < −1. (3.c.6)

Clearly, for w < −1, a(t) diverges in finite time.

c. We are asked to determine the condition for which the universe has a future horizon.

The null condition on the worldline of a photon travelling in, e.g., the x̂-direction is

ds2 = 0 = −dt2 + a2(t)dx2, =⇒ dx =
dt

a(t)
. (3.d.1)

7The problem explicitly calls this exotic energy density quintessence despite it having nothing at all to do with a model
of quintessence. Indeed, there are no models of quintessence for which w < −1, but these are considered here anyway.

8Actually, this is probably not the boundary conditions we would like to set: because the early universe will be either
matter or radiation dominated, it would be more natural to integrate from some some value a(t0) from whence quintessence
dominates. This, however, would not change our primary results.
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Therefore, the coordinate distance which a photon can travel is given by

x(t = ∞)− xi =
∫ ∞

t0

dt

a(t)
. (3.d.2)

It is obvious to anyone with an education including first-semester calculus that this
integral is finite only if a(t) ∝ tλ for λ > 1—and finiteness of the total distance
travelled during an infinite time span indicates the existence of a horizon. Using our
work above, we see that there is a horizon if

2
3(1 + w)

> 1, =⇒ w < −1
3
. (3.d.3)
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