
PHYSICS 505: CLASSICAL ELECTRODYNAMICS HOMEWORK 10 3

Problem 6.9
We are to discuss the conservation of energy and linear momentum for a macroscopic system of sources

and electromagnetic fields in a uniform, isotropic medium described by a permittivity ε and a perme-
ability µ. We are to derive the canonical energy density, Poynting vector, field-momentum density, and
Maxwell stress tensor.

A little bit surprised by the problem, we recall from chapters 4 and 5 of Jackson’s text that the
energy density of the electric and magnetic fields are, respectively,

WE =
1
2

∫

Ω

E ·D d3x and WB =
1
2

∫

Ω

H ·B d3x.

In a linear medium with the given permittivity and permeability, we have that D = εE and B = µH.
It is quite obvious therefore that the energy density will be given by

u =
1
2

(
εE2 + µH2

)
. ‘óπερ ’έδει δε�ιξαι

Although we could simply restate the exact arguments presented in Jackson’s section 6.7, we believe
this would be an utter waste of time. We hope that Ben will understand our reluctance to copy obvious
statements from the text. We find that the Poynting vector is simply

S = E×H. ‘óπερ ’έδει δε�ιξαι

For the field-momentum density, we similarly refer to Jackson’s section 6.7. Following the discussion
up to equation 6.117, we see that

Pfield = µε

∫

Ω

E×H d3x,

which of course implies that the field-momentum density is simply

g = µεE×H. ‘óπερ ’έδει δε�ιξαι

As we have done above, we notice that Jackson derives the Maxwell stress tensor in section 6.7 and
arrives at the expression

Tαβ = ε

[
EαEβ +

1
µε

BαBβ − 1
2

(
E ·E +

1
µε

B ·B
)

δαβ

]
.

Inserting our expression B = µH, we see that this quickly reduces to the desired

Tαβ =
[
εEαEβ + µHαHβ − 1

2
δαβ

(
εE2 + µH2

)]
.

‘óπερ ’έδει δε�ιξαι

Problem 6.10
We are to discuss the conservation of angular momentum and derive the differential and integral forms

of the conservation law.

It is not entirely clear to what extent we are supposed to ‘show’ this fact. It is rather clear that
the exact analogue of the momentum conservation law is given by

d

dt

∫

Ω

(r× gmech + r× gfield) d3x =
∮

∂Ω

r× Tαβnβ da,

d

dt

∫

Ω

(Lmech + Lfield) d3x =
∮

∂Ω

r×
←→
T · n da,

d

dt

∫

Ω

(Lmech + Lfield) d3x = −
∮

∂Ω

n ·
←→
M da,

∴ d

dt

∫

Ω

(Lmech + Lfield) d3x +
∮

∂Ω

n ·
←→
M da = 0.

‘óπερ ’έδει δε�ιξαι

It is fairly obvious that the differential form of the above is simply given by

∴ ∂

∂t
(Lmech + Lfield) +∇ ·

←→
M = 0.

‘óπερ ’έδει δε�ιξαι




