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Problem 7.28
Let us consider a circularly polarized plane wave moving in the z direction that has a finite extent

in the x and y directions. Assuming that the amplitude modulation is slowly varying, we are to give
approximations for the electric and magnetic fields.

Because the wave is circularly polarized, we can assume that its polarization has only a small longi-
tudinal part (which is independent of z because it is plane wave). Therefore, the electric field should be
be of the form,

E = [E0 (e1 ± ie2) + F (x, y)e3] ei(kz−ωt).

Now by Maxwell’s equations we know that e must be divergenceless in free space—or in a neutral
medium—so that ∇ ·E = 0. But this is simply the requirement that

∇ ·E =
[
∂E0

∂x
± i

∂E0

∂y
+ ikF (x, y)

]
ei(kz−ωt) = 0.

It is clear that this implies that

F (x, y) =
i

k

(
∂E0

∂x
± i

∂E0

∂y

)
.

Hence, we have that

∴ E =
[
E0(x, y) (e1 ± ie2) +

i

k

(
∂E0

∂x
± i

∂E0

∂y

)
e3

]
ei(kz−ωt).

‘óπερ ’έδει δε�ιξαι

We can find the field B using Maxwell’s equations. If E is slowly varying, then we may neglect second
derivatives of E0. Solving directly, we have

∂B
∂t

= −∇×E = −∇×
[
E0(x, y) (e1 ± ie2) +

i

k

(
∂E0

∂x
± i

∂E0

∂y

)
e3

]
ei(kz−ωt),

' −
[
±kE0(x, y)e1 + ikE0(x, y)e2 +

(
±i

∂E0

∂x
− ∂E0

∂y

)
e3

]
ei(kz−ωt),

Integrating out time, we see that

B = − ik

w

[
±E0(x, y)e1 + iE0(x, y)e2 +

1
k

(
±i

∂E0

∂x
− ∂E0

∂y

)
e3

]
ei(kz−ωt),

= ∓ ik

w

[
E0(x, y)e1 ± iE0(x, y)e2 +

1
k

(
i
∂E0

∂x
∓ ∂E0

∂y

)
e3

]
ei(kz−ωt),

= ∓i
√

µε

[
E0(x, y)e1 ± iE0(x, y)e2 +

i

k

(
∂E0

∂x
± i

∂E0

∂y

)
e3

]
ei(kz−ωt),

∴ B ' ∓i
√

µε E.
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Problem 7.29
For the circularly-polarized plane wave of problem 7.28 above and assuming that E0 is a real function,

we are to calculate the time-averaged component of angular momentum parallel to the direction of
propagation. We should compare this with the energy of the wave in vacuum and interpret this in terms
of photons.

Recall that in in vacuum, the time averaged energy (or simply the energy density) is given by u =
1
2

(
ε|E|2 + 1

µ |B|2
)
. In our situation, because B ' i

√
µεB, we have that u = ε|E|2.

For the angular momentum, we have that ` = εr× (E×B) and because E and B are orthogonal vectors
(in complex space) we have that |E×B| = ±√µε|E|2. The direction of propagation is given by the wave
vector vk and so ` = ±ε

√
εµk|E|2.

The ratio of the energy density to the angular momentum is therefore
`

u
= ±k

√
εµ = ± c

ω

1
c

= ±ω−1. ‘óπερ ’έδει δε�ιξαι

This reminds us of the quantization of the photon whose angular momentum can only take on discrete
values (and only has two helicities).
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