
Physics 523, Quantum Field Theory II
Homework 8

Due Wednesday, 10th March 2004

Jacob Lewis Bourjaily

Renormalization of Pseudo-Scalar Yukawa Theory
Let us consider the theory generated by the Lagrangian

L =
1
2
(∂µφo)2 − 1

2
m2

φo
φ2

o + ψo(i 6∂ −meo)ψo − igoψoγ
5ψoφo.

Superficially, this theory will diverge very similarly to quantum electrodynamics because the fields
and the coupling constant have the same dimensions as in quantum electrodynamics. Therefore, we see
that the superficial divergence is given by D = 4L − 2Pφ − Pe where L represents the number of loops
and Pφ and Pe represent the number of pseudo-scalar and fermion propagator particles, respectively.
Furthermore, we see that this can be reduced to

D = 4−Nφ − 3
2
Ne, (a.1)

where Nφ and Ne represent the number of external pseudo-scalar and fermion lines, respectively.
We see that this implies that the following diagrams are superficially divergent:

a)� D = 4 b)� D = 3 c)� D = 2

d)� D = 1 e)� D = 0 f)� D = 1

g)� D = 0

Although vacuum energy is an extraordinarily interesting problem of physics, we will largely ignore
diagram (a) which is quite divergent. We note that because the Lagrangian is invariant under parity
transformations φ(t,x) → −φ(t,−x) any diagram with an odd number of external φ’s will give zero. In
particular, the divergent diagrams (b) and (d) will be zero.

The first divergent diagram we will consider, (c), is clearly ∼ a0Λ2 +a1p
2 log Λ where we note that the

term proportional to p in the expansion vanishes by parity symmetry. Similarly, we näıvely suspect that
the divergence of diagram (f) would be ∼ a0Λ+ 6p log Λ but the term linear in Λ is reduced to me log Λ
by the symmetry of the Lagrangian of chirality inversion of ψ together with φ → −φ. The diagrams (e)
and (g) are both ∼ log Λ. All together, there are six divergent constants in this theory.

We note that because the diagram (e) diverges, we must introduce a counterterm δλ which implies
that our original Lagrangian should have included a term λ

4!φ
4.

We define renormalized fields, φo ≡ Z
1/2
φ φ and ψo ≡ Z

1/2
2 ψ, where Zφ and Z2 are as would be

defined canonically. Using these our Lagrangian can be written as

L =
1
2
Zφ(∂µφ)2 − 1

2
Zφm2

φo
φ2 − Z2ψ(i 6∂ −meo)ψ −−igoZ2Z

1/2
φ ψγ5ψφ− λ

4!
Z2

φφ4.

Let us define the counterterms,

δmφ
≡ Zφm2

φo
−m2

φ, δme ≡ Z2meo−me, δφ ≡ Zφ−1, δλ ≡ λoZ
2
φ−λ, δ1 ≡ go

g
Z2Z

1/2
φ −1, δ2 ≡ Z2−1.

Therefore, we may write our renormalized Lagrangian

L =
1
2
(∂µφ)2 − 1

2
m2

φφ2 + ψ(i 6∂ −me)ψ − igψγ5ψφ− λ

4!
φ4

+
1
2
δφ(∂µφ)2 − 1

2
δmφ

φ2 + ψ(iδ2 6∂ − δme)ψ − igδ1ψγ5ψφ− δλ

4!
φ4. (a.4)
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Let us compute the pseudo-scalar self-energy diagrams to the one-loop order, keeping only the diver-
gent pieces. This corresponds to:

−iM2(p2) =�p p

k

+�p k + p

p

k

+�p p
×

Using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

−iM2(p2) = −i
λ

2

∫
ddk

(2π)d

i

k2 −m2
φ

− g2

∫
ddk

(2π)d
Tr

[
γ5i(6k+ 6p + me)iγ5(6k + me)
((k + p)2 −m2

e)(k2 −m2
e)

]
+ i(p2δφ − δme),

= −i
λ

2
1

(4π)d/2

Γ
(
1− d

2

)

(m2
φ)1−d/2

− 4g2

∫ 1

0

dx

∫
ddk

(2π)d

`2 − x(1− x)p2 −m2
e

(`2 −∆)2
+ i(p2δφ − δm2),

= −i
λ

2
1

(4π)d/2

m2
φ

(1− d/2)
Γ

(
2− d

2

)

(m2)2−d/2
− 4g2

∫ 1

0

dx

[
− i

(4π)d/2

d

2
Γ

(
1− d

2

)

∆1−d/2
+

i

(4π)d/2

Γ
(
2− d

2

)

∆2−d/2

(
x(1− x)p2 + m2

e

)
]

+ i(p2δφ − δm2),

∼ i
λm2

φ

32π2

2
ε
− 8g2 i

(4π)2
2
ε

∫ 1

0

dx
(
m2

e − x(1− x)p2
)

+ 4g2 i

(4π)2
2
ε

∫ 1

0

dx
(
m2

e + x(1− x)p2
)

+ i(p2δφ − δm2),

= i
λm2

φ

16π2

1
ε

+ i
g2

4π2

2
ε

(
−2m2

e +
2
6
p2 +

1
6
p2 + m2

e

)
+ i(p2δφ − δm2),

= i

(
λm2

φ

16π2
+

g2p2

4π2
− g2m2

e

2π2

)
1
ε

+ i(p2δφ − δm2).

Therefore, applying our renormalization conditions, we see that1

∴ δmφ
=

(
λm2

φ

16π2
− g2m2

e

2π2

)
1
ε
, δφ = −

(
g2

4π2

)
1
ε
. (b.1)

Similarly, let us compute the fermion self-energy diagrams to one-loop order, keeping only divergent
parts. This corresponds to:

−iΣ2
2(6p) =�p k

p− k

p
+�p p

×
Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

−iΣ(6p) = g2

∫
ddk

(2π)d

[
γ5 i

((p− k)2 −m2
φ)

i(6k + me)
(k2 −m2

e)
γ5

]
+ i(6pδ2 − δme),

= −g2

∫
ddk

(2π)d

6k −me

(k2 −m2
e)((p− k)2 −m2

φ)
+ i(6pδ2 − δme),

= −g2

∫ 1

0

dz

∫
dd`

(2π)d

6pz −me

(`2 −∆)2
+ i(6pδ2 − δm2),

∼ −i
g2

(4π)2
2
ε

∫ 1

0

dz (6pz −me) + i(6pδ2 − δme),

= i

(
g2 6p
16π2

− g2me

8π2

)
1
ε

+ i 6pδ2 − iδme .

Therefore, applying our renormalization conditions, we see that

∴ δme = −
(

g2me

8π2

)
1
ε
, δ2 = −

(
g2

16π2

)
1
ε
. (b.2)

1For renormalization conditions and Feynman rules please see the Appendix.
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Let us now compute the δ1 counterterm by computing δΓ5(q = 0) given by:

δΓ5(q = 0) =�p k

p− k

k + q

p′

←−q ∼ 0
+�×

Again, using the ‘canonical procedure’ and dropping all but divergent pieces (linear in ε−1) we see that

δΓ5(q = 0) = −ig2

∫
ddk

(2π)d

γ5(6k + me)γ5(6k + me)γ5

((p− k)2 −m2
φ)(k2 −m2

e)(k2 −m2)
+ δ1γ

5,

= ig2γ5

∫
ddk

(2π)d

(6k + me)(6k −me)
((p− k)2 −m2

φ)(k2 −m2
e)(k2 −m2)

+ δ1γ
5,

= ig2γ5

∫ 1

0

dz

∫
dd`

(2π)d

`2 + (z2 − 1)m2
e

(`2 −∆)3
+ δ1γ

5,

= ig2γ5

∫ 1

0

dz(1− z)
[

i

(4π)2
d

2
2
ε

]
+ δ1γ

5,

= −γ5 g2

8π2

1
ε

+ δ1γ
5.

Therefore, applying our renormalization conditions, we see that

∴ δ1 =
(

g2

8π2

)
1
ε
. (b.3)

Let us now compute the δλ counterterm by computing the one-loop correction to the standard φ4

vertex. The five contributing diagrams are:

iM =� +� +� +� +�×
We may save a bit of sweat by noting that the sum of the first four diagrams is identical to the analogous
diagrams in φ4-theory. The sum was computed fully both in class and in the text and give a divergent
contribution of 3λ2

16π2
1
ε to δλ. Therefore, we are only burdened with the calculation of the remaining two.

We see that, (note the combinatorial factor of 6)

iM = i
3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d
Tr

[
γ5(6k + me)γ5(6k−6p1 + me)γ5(6k−6p1−6p2 + me)γ5(6k−6p1−6p2+ 6p3 + me)

(k2 −m2
e)((k − p1)2 −m2

e)((k − p1 − p2)2 −m2
e)((k − p1 − p2 + p3)2 −m2

e)

]
− iδλ,

∼
k→∞ i

3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d

Tr
[
γ5 6kγ5 6kγ5 6kγ5 6k]

(k2 −m2
e)

4 − iδλ,

= i
3λ2

16π2

1
ε
− 6g4

∫
ddk

(2π)d

4k4

(k2 −m2
e)4

− iδλ,

= i
3λ2

16π2

1
ε
− 24g2 i

(4π)d/2

d(d + 2)
4

Γ
(
2− d

2

)

6∆2−d/2
− iδλ,

= i
3λ2

16π2

1
ε
− i

3g4

π2

1
ε
− iδλ.

Therefore, applying our renormalization conditions, we see that

∴ δλ =
(

3λ2

16π2
− 3g4

π2

)
1
ε
. (b.4)
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Appendix

Feynman Rules and Renormalization Conditions

Given the Lagrangian for pseudo-scalar Yukawa theory,

L =
1
2
(∂µφ)2 − 1

2
m2

φφ2 + ψ(i 6∂ −me)ψ − igψγ5ψφ− λ

4!
φ4

+
1
2
δφ(∂µφ)2 − 1

2
δmφ

φ2 + ψ(iδ2 6∂ − δme
)ψ − igδ1ψγ5ψφ− δλ

4!
φ4,

we can derive the renormalized Feynman rules.

� = i
p2−mφ2+iε � = i

6p−me+iε

� = −iλ � = gγ5

�× = i(p2δφ − δmφ
) �p p

× = i(6pδ2 − δme)

�× = −iδλ �× = gδ1γ
5

To derive the counter terms explicitly, it is necessary to offer a convention of renormalization condi-
tions. Above, we have used the conditions:

� = i
p2−mφ2+iε with pole = 1.

� = −iλ at s = 4m2, t = u = 0.

Σ(6p = m) = 0.

dΣ(6p)
d 6p

∣∣∣∣
6p=m

= 0.

gΓ5(q = 0) = gγ5.




