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Physics 513, Quantum Field Theory
Homework 3

Due Tuesday, 23rd September 2003

Jacob Lewis Bourjaily

1. a) We are given complex scalar Lagrangian,

L = ∂µφ∗∂µφ−m2φ∗φ.

It is clear that the canonical momenta of the field are

π =
∂L

∂(∂0φ)
= ∂0φ

∗;

π∗ =
∂L

∂(∂0φ∗)
= ∂0φ.

The canonical commutation relations are then

[φ(x), ∂0φ
∗(y)] = [φ∗(x), ∂0φ(y)] = iδ(3)(x− y),

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly
computed,

H =
∫

d3xH =
∫

d3x (π∂0φ− L),

=
∫

d3x
(
π∗π − 1/2π∗π + 1/2∇φ∗∇φ + 1/2m2φ∗φ

)
,

=
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ

)
.

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion.
We have

i∂0φ(x) =
[
φ(x),

1
2

∫
d3y

(
π∗(y)π(y) +∇φ∗(y)∇φ(y) + m2φ∗(y)φ(y)

)]
,

=
1
2

∫
d3y [φ(x), π(y)]π∗(y),

=
i

2

∫
d3y δ(3)(x− y)π∗(y),

=
i

2
π∗(x).

Analogously, i∂0φ
∗(x) = i

2π(x). Notice that this derivation used the fact that φ commutes
with everything in H except for π. Before we compute the commutator of π∗(x) with the
Hamiltonian, we should re-write H as PS did so that our conclusion will be more lucid. We
have from above that

H =
1
2

∫
d3x

(
π∗π +∇φ∗∇φ + m2φ∗φ

)
.

We can evaluate the middle term in H using Green’s Theorem (essentially integration by
parts). We will assume that the surface term vanishes at infinity because the fields must.
This allows us to write the Hamiltonian as,

H =
1
2

∫
d3x

(
π∗π + φ∗(−∇2 + m2)φ

)
.
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Commuting this with π∗(x), we conclude that

i∂0π
∗(x) =

1
2

∫
d3y [π∗(x), φ∗(y)](−∇2 + m2)φ(y),

= − i

2

∫
d3y (−∇2 + m2)φ(y)δ(3)(x− y),

= − i

2
φ(x).

Combining the two results, it is clear that

∂2
0φ(x) = (∇)2 −m2)φ(x),

=⇒ (∂µ∂µ + m2)φ = 0.

This is just the Klein-Gordon equation. The result is the same for the complex conjugate
field.

b) Because the field is no longer purely real, we cannot assume that the coefficient of eip·x in
the ladder-operator Fourier expansion is the adjoint of the coefficient of e−ip·x. Therefore
we will use the operator b. The expansion of the fields are then

φ(xµ) =
∫

d3p

(2π)3
1√
2ωp

(
ape−ipµxµ

+ b†peipµxµ
)
;

φ∗(xµ) =
∫

d3q

(2π)3
1√
2ωq

(
a†qeiqµxµ

+ bqe−iqµxµ
)
.

It is easy to show that these allow us to define π and π∗ in terms of a and b operators as
well. These become,

π(xµ) = ∂0φ
∗(xµ) =

∫
d3q

(2π)3
i

√
ωq

2

(
a†qeiqµxµ − bqe−iqµxµ

)
;

π∗(xµ) = ∂0φ(xµ) =
∫

d3p

(2π)3
i

√
ωp

2

(
−ape−ipµxµ

+ b†peipµxµ
)
.

These allow us to directly demonstrate that

[φ(xµ), π(yµ)] =
∫

d3pd3q

(2π)6
−i

2

√
ωq

ωp

([
ap, a†q

]
e−i(pµxµ−qµxµ) − [

b†p, bq
]
ei(pµxµ−qµxµ)

)
,

= iδ(3)(x− y),

while noting that
[
ap, a†q

]
=

[
bp, b†q

]
= (2π)3δ(3)(p− q),

and all other terms commute. This implies that there are in fact two entirely different sets
of particles with the same mass: those created by b† and those created by a†.

c) I computed the conserved Noether charge in Homework 2 as

jµ = i (φ∂µφ∗ − φ∗∂µφ) .

We integrate this over all space to see the conserved current in the 0 component. When
expressing phi and pi in terms of ladder operators, we can evaluate this directly.

Q =
i

2

∫
dx(φ∗(x)π∗(x)− π(x)φ(x)),

=
i

2

∫
d3xd3pd3q

(2π)6
(
apa†qeixµ(qµ−pµ) − apbqe−ixµ(pµ+qµ) + b†pa†qeixµ(pµ+qµ) − b†pbqeixµ(qµ−pµ)

)
− c.c.,

=
i

2

∫
d3pd3q

(2π)3
(
apa†qδ(3)(p− q)− apbqδ(3)(p + q) + b†pa†qδ(3)(p + q)− b†pbqδ(3)(p− q)

)
− c.c.,

=
i

2

∫
d3p

(2π)3
(
apa†p − apb−p + b†pa†−p − b†pbp

)
− c.c.,

= i

∫
d3p

(2π)3
(
a†pap − b†pbp

)
.

‘óπερ ’έδει δεÄιξαι
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The calculation on the previous page clearly shows that particles that were created by b†

contribute oppositely to those created by a† to the total charge. We concluded in Homework
2 that this charge was electric charge.

2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,

DW (x) ≡ 〈0|φ(x)φ(0)|0〉 =
∫

d3p

(2π)3
1

2Ep
e−ipx.

Because x is a space-like vector, there exists a reference frame such that x0 = 0. This implies
that x2 = −x2. And this implies that px = −p · x = −|p||x| cos(θ) = −|p|√−x2 cos(θ). We
can then write DW (x) in polar coordinates as

DW (x) =
1

(2π)3

∫ 2π

0

dφ

∫ π

0

ei|p|√−x2 cos(θ)

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

=
1

(2π)2

∫ π

0

dθ ei|p|√−x2 cos(θ)

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

=
1

(2π)2

∫ 1

−1

dξ ei|p|√−x2ξ

∫ ∞

0

p2dp
1

2
√

p2 + m2
,

(where ξ = cos(θ))

=
1

4π2

∫ ∞

0

p2dp
1

2
√

p2 + m2

1
i|p|√−x2

(
ei|p|√−x2 − e−i|p|√−x2

)
,

=
1

4π2
√−x2

∫ ∞

0

dp
p sin(|p|√−x2)√

p2 + m2
.

Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,∫ ∞

0

dx
cos(ax)√
β2 + x2

= K0(aβ)).

By differentiating both sides with respect to a, it is shown that

−
∫ ∞

0

dx
a sin(ax)√

β2 + x2
= −βK ′

0(aβ) = βK1(aβ).

We can use this identity to write a more concise equation for DW (x). We may conclude

DW (x) =
m

4π2
√−x2

K1(m
√
−x2).

b) We may compute directly,

iD(x) = 〈0|[φ(x), φ(0)]|0〉,
= 〈0|φ(x), φ(0)|0〉 − 〈0|φ(0), φ(x)|0〉,
= DW (x)−DW (−x),

=⇒ D(x) = i(DW (−x)−DW (x)).

Similarly,
D1(x) = 〈0|{φ(x), φ(0)}|0〉 = DW (x) + DW (−x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to
conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.




