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Paysics 513, QUANTUM FIELD THEORY
Homework 3
Due Tuesday, 23rd September 2003
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a) We are given complex scalar Lagrangian,

L=0,06"0"d—m>¢*¢.

It is clear that the canonical momenta of the field are
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The canonical commutation relations are then

[B(x), 00" (y)] = [¢" (2), D08 (y)] = 18P (x — y),

with all other combinations commuting. As in Homework 2, the Hamiltonian can be directly
computed,

H = /d3xH=/d3a?(7Tao¢—£),
= /d?’x (7r*7r —1/2n*m 4+ 1/2V¢*V + 1/2m2¢*¢),
1
~ 3 /d3x (77 4+ V¢* Vo + m?¢*9).

We can use this expression for the Hamiltonian to find the Heisenberg equation of motion.
We have

auota) = o). [ @y (5" (n(o) + V6" ) Vo) + 0" (o).
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Analogously, i0p¢™(x) = %7‘(‘(.’1’:) Notice that this derivation used the fact that ¢ commutes
with everything in H except for 7. Before we compute the commutator of 7*(x) with the
Hamiltonian, we should re-write H as PS did so that our conclusion will be more lucid. We
have from above that

1
H= 3 /d% (77 4+ V¢* Vo + m?¢*9).
We can evaluate the middle term in H using Green’s Theorem (essentially integration by
parts). We will assume that the surface term vanishes at infinity because the fields must.
This allows us to write the Hamiltonian as,

H= %/d% (m*m 4+ ¢* (= V? + m?)9).
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Commuting this with 7*(x), we conclude that

1

o (@) = 5 [yl (@), 6 ()~ + m?)oly),

_% /d3y (=V2 +m?)¢(y)6® (x —y),

= —56().
Combining the two results, it is clear that
Fd(a) = (V)? —m?)e(z),
= (0,0" + m?)¢ = 0.
This is just the Klein-Gordon equation. The result is the same for the complex conjugate
b) f];fja.use the field is no longer purely real, we cannot assume that the coefficient of e in

the ladder-operator Fourier expansion is the adjoint of the coefficient of e~"P*. Therefore
we will use the operator b. The expansion of the fields are then
d? 1 , ,
et = / (27:))3 oo, (ape_w”“ + bf)ew“x“);
p
d3 1 I -
#) = / (2733 2w (aLequ + bge " )
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It is easy to show that these allow us to define m and 7* in terms of a and b operators as
well. These become,

N * N d3q . W iq,xt —iq xt
m(xh) = Opep™ (xM) = / (27r)3“ / 701 (aLe W — pge™tnT );
. dBp | |w P P
T (z") = ogp(z") = / (27T)3Z 719 (*ape Prt 4 bI)€ Pu )

These allow us to directly demonstrate that

Bodda —i e P
[¢(x#)77r(y#)] :/ (2];)6‘171 %2 ([apaajl] e_z(pi“f quc ) _ [b;,bq] e (P;r qus )>’

while noting that

[ap, al] = [bp,b]] = (21)*6® (p - q),
and all other terms commute. This implies that there are in fact two entirely different sets

of particles with the same mass: those created by bf and those created by af.
c) I computed the conserved Noether charge in Homework 2 as

j* =i(¢0"¢" — 970" 9).

We integrate this over all space to see the conserved current in the 0 component. When
expressing phi and pi in terms of ladder operators, we can evaluate this directly.
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i [ dPpdiq £ 53— o) — abog® b ot 5@ Cbs® ()
~2) (@3 apay6'” (p — q) — apbqd™”’ (p + q) + bpayd™ (p+ q) — bybgd™ (p — q) ) — c.c.,

d’p i gl i
K (apap —apb_p +bpal , — bpbp) —c.c.,

[ dPp
= 2/ e (a;r)ap — b;bp).
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The calculation on the previous page clearly shows that particles that were created by bf
contribute oppositely to those created by a' to the total charge. We concluded in Homework
2 that this charge was electric charge.

We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,
Bp 1
D =0 0)|0) = —
() = Olo)o)0) = [ 5855

Because z is a space-like vector, there exists a reference frame such that £° = 0. This implies
that 22 = —x2. And this implies that pz = —p - x = —|p||z| cos(#) = —|p|v/—z2 cos(#). We
can then write Dy (z) in polar coordinates as

1 2m T . o) 1
Dw(l') _ / d¢/ ez\p\\/—x cos(0) / dep ’
(2m)3 Jo 0 0 21/p% + m?
1 T : 7 cos °° 1
— do ez|p|\/—x cos(0) / 2d ’
(277)2/0 0oV p2\/p2+m2
1 /1 oz [ 1
= dg e'lPIV = / pdp ———,
(2m)? )y 0 2y/p? +m?
(where £ = cos(0))
1 / <, 1 1 ipIV=a" _ —ilplv=a?
=-— [ pidp : (e b —e ' )
472 /o 24/p? + m2 ilp|v/—a?
_ L psin(plV=a?)
an2/—z2 /p2 + m?2 '

Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,

N — Ko(a).

—ipx

i cos(azx)

o _cosaz)

By differentiating both sides with respect to a, it is shown that

= —BK;(aB) = BK:(af).

°°  asin(ax)

o sin(or)

We can use this identity to write a more concise equation for Dy (x). We may conclude

Dy (z) =

2K1(m —.TZ).
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We may compute directly,
iD(z) = (0l[¢(x), p(0)]]0),
= (0l¢(x), ¢(0)|0) — {0|¢(0), ¢(x)|0),
= Dw(z) — Dw (—x),
= D(z) = i(Dw(—z) — Dw(x)).
Similarly,
Dy (z) = (0{¢(x), ¢(0)}/0) = Dw (z) + Dw (—x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to

conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.





