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PHYSICS 513: QUANTUM FIELD THEORY HOMEWORK 3 3

The calculation on the previous page clearly shows that particles that were created by bf
contribute oppositely to those created by a' to the total charge. We concluded in Homework
2 that this charge was electric charge.

We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,
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Because z is a space-like vector, there exists a reference frame such that £° = 0. This implies
that 22 = —x2. And this implies that pz = —p - x = —|p||z| cos(#) = —|p|v/—z2 cos(#). We
can then write Dy (z) in polar coordinates as
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Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,
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By differentiating both sides with respect to a, it is shown that
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We can use this identity to write a more concise equation for Dy (x). We may conclude

Dy (z) =
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We may compute directly,
iD(z) = (0l[¢(x), p(0)]]0),
= (0l¢(x), ¢(0)|0) — {0|¢(0), ¢(x)|0),
= Dw(z) — Dw (—x),
= D(z) = i(Dw(—z) — Dw(x)).
Similarly,
Dy (z) = (0{¢(x), ¢(0)}/0) = Dw (z) + Dw (—x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to

conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.





