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The calculation on the previous page clearly shows that particles that were created by b†

contribute oppositely to those created by a† to the total charge. We concluded in Homework
2 that this charge was electric charge.

2. a) We are asked to compute the general, K-type Bessel function solution of the Wightman
propagator,
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Because x is a space-like vector, there exists a reference frame such that x0 = 0. This implies
that x2 = −x2. And this implies that px = −p · x = −|p||x| cos(θ) = −|p|√−x2 cos(θ). We
can then write DW (x) in polar coordinates as
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Gradsteyn and Ryzhik’s equation (3.754.2) states that for a K Bessel function,∫ ∞
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By differentiating both sides with respect to a, it is shown that
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We can use this identity to write a more concise equation for DW (x). We may conclude
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b) We may compute directly,

iD(x) = 〈0|[φ(x), φ(0)]|0〉,
= 〈0|φ(x), φ(0)|0〉 − 〈0|φ(0), φ(x)|0〉,
= DW (x)−DW (−x),

=⇒ D(x) = i(DW (−x)−DW (x)).

Similarly,
D1(x) = 〈0|{φ(x), φ(0)}|0〉 = DW (x) + DW (−x).

It is clear that both function ‘die off’ very rapidly at large distances. I was not able to
conclude that they were truly vanishing, but they are certainly nearly-so at even moderately
small distances.




