Paysics 523, QUANTUM FIELD THEORY II
Homework 7
Due Wednesday, 3'¢ March 2004
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Superficial Divergences
Let us consider ¢? scalar field theory in d = 4 dimension. The Lagrangian for this theory is
1 1 1
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a) Let us determine the superficial divergence D for this theory in terms of the number of vertices
V' and the number of external lines N. From this we are to show that the theory is super-
renormalizable.

In generality, the superficial divergence of a @™ theory in d dimensions can be given by
D = dL — 2P, where L is the number of loops and P is the number of propagators
because each loop contributes a d-dimensional integration and each propagator con-
tributes a power of 2 in the denominator. Furthermore, we see that nV = N + 2P
because each external line connects to one vertex and each propagator connects two
and each vertex involves n lines. This implies that P = 3(nV — N).

Therefore, still in complete generality, the superficial divergence of a ¢" theory in d-
dimensions may be written

D:dL—2P:gnV—gN—dV+d—nV+N,

d—2 d—2
=d —d|V - ——N.
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Therefore, in a 4-dimensional ¢3-theory the superficial divergence is given by

ID=4-V -N. (La.l)
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We see that because D o« —V the theory is super-renormalizable.

b) We are to show the superficially divergent diagrams for this theory that are associated with the
exact two-point function.
Using equation (1.a) above, we see that the three superficially divergent diagrams in this
p3-theory associated with the exact two-point function are:

¢) Let us compute the mass dimension of the coupling constant g.
Because . must have dimension (mass)* each term should have dimension (mass)*.
Because of the m?¢? term, this implies that the field ¢ has dimension (mass)?!.

Therefore the coupling g must have dimension (mass)?!.

Renormalization and the Yukawa Coupling
We are to consider the theory of elementary fermions that couple to both QED and a Yukawa field ¢
governed by the interaction Hamiltonian

i /d%eAm“w.

a) Let us verify that 6Z; = §Z5 to the one-loop order.

We computed in homework 4 the amplitude for the ¥y1) vertex with a virtual scalar ¢,
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In the limit where ¢ — 0, we see that this implies

" o u(p) (¢ + m) " (¢ + m)] u(p)
U(p)oT ulp) =i /(%)d (p— k)2 —m2 +ie) (k2 —m? + ie) (K2 —m? + ie)’

Using Feynman parametrization to simplify the denominator, we will use the variables

b=k—zp and A=(1-2z2)7*m*+ zmi.
The numerator of the integrand is then reduced to
N = ﬂ(p) [+ 2+ m)¥" G+ 29+ m)] u(p),
p) A" I+ 2 " P+ mz g+ may - mPy ] u(p),
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Combining this with our work above, we see that this implies
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~ 1-— —— [ ——logA — log(4 -
/Odz( z)[ > (6 0g A — v + log( 7T)) 3 }

A2t e—2 (2 m2(1 + z)?

A2t 2 m2(1 + z)?
VAR 39,2 /Odz(l —z) {1 - (e —logA —vg + log(47r)) - A} (2.a.1)

Let us now compute the one-loop contribution of ¢ to the electron two-point function,
p—k

22 rd'k i(b+m)
2 J(2m)T ((p—k)2—m2 +ie) (k2 —m2tie)

! \ = X4, =
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We will define the following variables for Feynman parametrization of the denominator:
{=k— zp, and = —z(l—z);/z—l-zmi—&—(l—z)mZ.

We see therefore that

A2 /d /ddﬁ zg+m
v =1y — A +i€e]?’
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A2t 2
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Therefore,
0% by A2t 2 2mz(1 — z)
- - Z _logA— log (4 AT 2
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Let us now compute the difference 75 — §7;. We see that

522 —521 = 3;\ 3 OdZ _(1—22)10g <i> —|—(1_22) <§ —7E+10g(47r)> —(1—2’) . m (1 *Z)(lJrz) (22_ (1+Z)) ’
)\2 1 1 m2 1_ 9 1 ;
= 392 d _(1—22)10g (A>_(1_Z)+ ( A)( + )}
327r2/dz (1-9-= (1—2(1_2 o-g+ (1_A) (Hﬂ,
- m2(1fz)2(1+z) m2(172)2(1+z)
32w2/d B A + A }
’ 04y — 0641 =0. ‘ (2&3)
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We can expect that Z; = Zs quite generally in this theory because our proof of the
Ward-Takahashi identity relied, fundamentally, on the local U(1) gauge invariance of
the A, term in the Lagrangian which is not altered by the addition of the scalar ¢.

b) Let us now consider the renormalization of the 1)@ vertex in this theory.
The two diagrams at the one-loop level that contribute to @(p’)dTu(p) are

These diagrams yield

., [d%_ D) i i(f+ ¢+ m) il 4+ m) Y
D) = figma ) K‘ﬂ) (o (e N ] )

i+ ¢+ m) —i il +m) e "
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Taking the limit where ¢ — 0 and introducing the variables

+(—ier™)

L=k —zp, AL =(1-2)*m?+ zmi, and Ay = (1—2)°m? + zu?,

this becomes,

1 d 2 2 2m2 2 m2 22 z _
a(p)aru(p)z/odz(l—z)/d Ed (») lvMH)_%eadf +m? (d(2? +1) + 22(2 d>)] ul(p).

(2m) (2 — Ay +i€)3 (2 — Ay +i€)3
Therefore,
! die 24 (1 + 2)*m? de* +m? (d(z2 + 1) + 22(2 — d))
Zy = —0F] = 1- —i\? 2ie?
VA Y2 /Odz( Z)/(27r)d i CEYNETAE + 2ie (= Dyt i0) )

= /ldz(l - z)/ddg —iAQL +2ie2d—£2 + finite terms
) (2m)d (2 — Aq +i€)3 (2 — Ay + i€)3 ’
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+ finite terms,

! A2 (2 1\ 2a (2 .
= 0dz(l —2) T6n2 —log Ay — vg + log(4m) — 3) o\ log Ay —vg +log(4m) — 1 )| + finite terms,
1 2
= /dz(l - z)g )\— 2 + finite terms,
0 e \1672 7

1 A2 200
07 = (167‘(‘2 — 71-) + finite terms. (2.b.2)
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Now let us compute 6Z5. We see that this factor comes from the diagrams,
p—k p—k

PN
— l/ \ + - m

e L |

p k p p k p
We see that we have already computed both of these contributions; the first diagram’s
contribution was computed above and the second diagram’s contribution was com-
puted in homework 6.
Therefore, we note that

1 A2
Combining these results, we have that
3 [ « A2
. o A :
.02y — 62, ; (271_ 327r2> + finite terms # 0. (2.b.4)
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