
Web Appendix for Busso, DiNardo, and McCrary (2011)
Part I

Part IA of the Web Appendix provides some specialized calculations for the density function of the propensity score conditional on
treatment status. Part IB documents large sample properties of reweighting estimators using a parametric model for the propensity
score and collects known results from Abadie and Imbens (2006) on the asymptotic variance of nearest neighbor matching on
covariates, for the special case of matching on a single continuous covariate. Part IB also compares the asymptotic variance
of normalized and unnormalized reweighting and compares the asymptotic variance of normalized reweighting to that of nearest
neighbor matching for the special case of the Frölich (2004) designs. Part IC demonstrates that all of the DGPs studied in the main
text are well-behaved in the sense that the semiparametric efficiency bound is finite. Part ID gives details on the generation of pseudo-
random numbers. Part IE discusses the issue of existence of the population expectation and variance of the estimators we study.

Part IA: Overlap Plots

Here, we record the formulas for plots of the conditional density and conditional probability function for the propensity score
conditional on treatment status. We start with the continuous case, corresponding to the Frölich (2004) design. For simplicity, we
drop subscripts. Suppose X is scalar and p(X) = α + βΛ(c0 + c1X), with c1 > 0, where Λ(z) = exp(z)/(1 + exp(z)). Since p(·)
is monotonic increasing, we have p−1(v) = (ln(v − α)− ln(α+ β − v)− c0)/c1 and by construction α+ βΛ(c0 + c1p

−1(v)) = v. We
assume that T is generated according to T = 1 (U ≤ α+ βΛ(c0 + c1X)) where U is distributed standard uniform and independent
of X. Fix v ∈ (α, α+ β). We begin by finding the distribution function for the propensity score. We have

P (p(X) ≤ v) = P
(
X ≤ p−1(v)

)
=

∫ p−1(v)

−∞
fX(x)dx (1)

Next, differentiate with respect to v to obtain the density function, fp(X)(v). By Leibniz’s Rule, we have

fp(X)(v) = fX
(
p−1(v)

) d

dv
p−1(v) = fX

(
p−1(v)

) 1

c1

β

(v − α)(α+ β − v)
(2)

We turn now to the distribution function for the propensity score conditional on T = t. To do so, we first establish a lemma.

Lemma. If X and Y are independent and continuous, then P (Y ≤ a + bX,X ≤ c) =
∫ c
−∞ fX(x)FY (a + bx)dx. Under the same

condition, P (Y > a+ bX,X ≤ c) = FX(c)−
∫ c
−∞ fX(x)FY (a+ bx)dx =

∫ c
−∞ fX(x)(1− FY (a+ bx))dx.

Proof. First, note that

P (Y ≤ a+ bX,X < c) =

∫ c

−∞

∫ a+bx

−∞
fX,Y (x, y)dydx =

∫ c

−∞

∫ a+bx

−∞
fX(x)fY (y)dydx =

∫ c

−∞
fX(x)

∫ a+bx

−∞
fY (y)dydx

=

∫ c

−∞
fX(x)FY (a+ bx)dx

Then, note that P (Y > a+ bX,X ≤ c) = P (X ≤ c)− P (Y ≤ a+ bX,X ≤ c) so that the result above establishes the result for the
second case as well as the first.

By the lemma we have

P (p(X) ≤ v|T = 1) = P (p(X) ≤ v, T = 1)
/
P (T = 1) = P (p(X) ≤ v, U ≤ α+ βΛ(c0 + c1X))

/
q (3)

=
1

q
P
(
U ≤ α+ βΛ(c0 + c1X), X ≤ p−1(v)

)
=

1

q

∫ p−1(v)

−∞
fX(x)FU (α+ βΛ(c0 + c1x))dx (4)

P (p(X) ≤ v|T = 0) =
1

1− q P (p(X) ≤ v, U > α+ βΛ(c0 + c1X)) =
1

1− q P
(
U > α+ βΛ(c0 + c1X), X ≤ p−1(v)

)
(5)

=
1

1− q

∫ p−1(v)

−∞
fX(x)(1− FU (α+ βΛ(c0 + c1x)))dx (6)

By differentiation using Leibniz’s Rule, we have

fp(X)|T=1(v) =
1

q
fX(p−1(v))FU (α+ βΛ(c0 + c1p

−1(v)))
d

dv
p−1(v) (7)

=
1

q
fp(X)(v)(α+ βΛ(c0 + c1p

−1(v))) =
1

q
fp(X)(v)v (8)

fp(X)|T=0(v) =
1

1− q fX(p−1(v))(1− FU (α+ βΛ(c0 + c1p
−1(v))))

d

dv
p−1(v) (9)

=
1

1− q fp(X)(v))(1− α− βΛ(c0 + c1p
−1(v))) =

1

1− q fp(X)(v))(1− v) (10)

1



A simpler derivation for the case of discrete covariates shows that the conditional probability function for p(X) has the form

fp(X)|T=1(vj) =
1

q
πjvj (11)

fp(X)|T=0(vj) =
1

1− q πj(1− vj) (12)

where vj is a point of support of p(X) and πj is the probability that X takes on a value xj such that p(xj) = vj . In the case of no ties,
p(X) is distributed uniform over the set {p(x1), p(x2), . . . , p(xJ)}, and each outcome in that set occurs with probability πj = 1/J .

Part IB: Asymptotic Variance Calculations

In the interest of being self-contained, we briefly review notation and context. For every unit i, we observe Yi = TiYi(1) + (1 −
Ti)Yi(0), Ti and Xi. We want to estimate the population parameter θ = E[Yi(1) − Yi(0)|Ti = 1], referred to in the main text as
TOT. We assume that conditional on Xi, Ti is independent of Yi(1) and Yi(0) (conditional independence) and that 1−p(x) ≥ ξ > 0
for almost every x in the support of Xi (strict overlap). For t ∈ {0, 1}, define the conditional expectations µt(x) = E[Yi(t)|Xi = x],
the conditional variances σ2

t (x) = V [Yi(t)|Xi = x], and the parameters αt = E[µt(Xi)|Ti = 1]. Finally, define the covariate-specific
treatment effects, τ(x) = E[Yi(1) − Yi(0)|Xi = x] = µ1(x) − µ0(x) and note that θ = E [τ(Xi)|Ti = 1] = α1 − α0. The researcher
observes Yi, Ti, and Xi for all units. The first step propensity score is based on a logit model using covariate vector Zi which
contains a constant as well as functions of Xi. An overview of the results recorded here is given in Web Appendix Table 1.

1 The Unnormalized True Weights Estimator, θ̂U,tw

Consider

θ̂U,tw =

∑
i YiTi∑
i Ti

−
∑
j Yj(1− Tj)Wj∑

j Tj
(13)

where Wj = p(Xj)/(1−p(Xj)). Let γ = (θ, q)′ denote the TOT parameter and probability of treatment. Then γ̂ = (θ̂U,tw,
∑
i Ti/n)

solves 0 = 1
n

∑
imi(γ̂), where mi(γ) and its derivative matrix are given by

mi(γ) =

(
(TiYi − (1− Ti)WiYi) /q − θ

Ti − q

)
and Mi(γ) = −

(
1 1

q2
(TiYi − (1− Ti)WiYi)

0 1

)
(14)

where q = P (Ti = 1). Evaluated at γ∗ and assuming no misspecification of the propensity score, the expectation of the derivative
and the variance of the moments are given by

M = −
(

1 θ/q
0 1

)
and Σ =

(
a b
b q(1− q)

)
(15)

where a = V [YiTi − Yi(1− Ti)Wi]/q
2 and b = E[µ1(Xi)p(Xi)]/q − qθ. So the asymptotic variance of γ̂ is

M−1ΣM ′−1 =

(
1 −θ/q
0 1

)(
a b
b q(1− q)

)(
1 0
−θ/q 1

)
=

(
1 −θ/q
0 1

)(
a− bθ/q b

b− θ(1− q) q(1− q)

)
(16)

=

(
a− 2bθ/q + θ2(1− q)/q b− θ(1− q)

b− θ(1− q) q(1− q)

)
(17)

The asymptotic variance of θ̂U,tw is thus

AV (θ̂U,tw) =
1

q2

{
q2a− 2θbq + θ2q(1− q)

}
=

1

q2

{
V [YiTi − Yi(1− Ti)Wi]− 2θ

(
E[µ1(Xi)p(Xi)]− q2θ

)
+ θ2q(1− q)

}
(18)

= A+
1

q2

{
E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
− 2θE[µ1(Xi)p(Xi)] + θ2q

}
(19)

= Ωθ +
1

q2

{
E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
− E

[
(τ(Xi)− θ)2 p(Xi)

]
− 2θE[µ1(Xi)p(Xi)] + θ2q

}
= Ωθ +

1

q2

{
E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
− E

[
τ(Xi)

2p(Xi)
]

+ θ2q − 2θE[µ1(Xi)p(Xi)] + θ2q

}
(20)

= Ωθ +
1

q2

{
E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
−
(
E
[
µ1(Xi)

2p(Xi)− 2µ1(Xi)µ0(Xi)p(Xi) + µ0(Xi)
2p(Xi)

])
−2θE[µ1(Xi)p(Xi)] + 2θ2q

}
(21)

= Ωθ +
1

q2

{
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
+ 2E [µ1(Xi)µ0(Xi)p(Xi)]− 2E

[
µ0(Xi)

2p(Xi)
]
− 2θE[µ1(Xi)p(Xi)] + 2θ2q

}
= Ωθ +

1

q2

{
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
+ 2E [µ1(Xi)µ0(Xi)p(Xi)]− 2E

[
µ0(Xi)

2p(Xi)
]
− 2θE[µ0(Xi)p(Xi)]

}
(22)

= Ωθ +
1

q2
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
+ 2

1

q
C[τ(Xi), µ0(Xi)|Ti = 1] (23)
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where we use the definitions

A =
1

q2

{
E
[
σ2

1(Xi)p(Xi) + σ2
0(Xi)

p(Xi)
2

1− p(Xi)

]}
(24)

Ωθ =
1

q2

{
E
[
σ2

1(Xi)p(Xi) + σ2
0(Xi)

p(Xi)
2

1− p(Xi)

]
+ E

[
(τ(Xi)− θ)2p(Xi)

]}
(25)

and the results

E[YiTi] = E[E[YiTi|Xi]] = E[E[Yi(1)Ti|Xi]] = E[µ1(Xi)p(Xi)] (26)

E[(1− Ti)WiYi] = E[E[(1− Ti)WiYi|Xi]] = E[WiE[(1− Ti)Yi(0)|Xi]] = E[Wi(1− p(Xi))µ0(Xi)] (27)

= E[µ0(Xi)p(Xi)] (28)

V [YiTi] = E[Yi(1)2Ti]− E[YiTi]
2 = E

[
p(Xi)

(
σ2

1(Xi) + µ(Xi)
2)]− E [µ1(Xi)p(Xi)]

2 (29)

= E
[
σ2

1(Xi)p(Xi) + µ1(Xi)
2p(Xi)

]
− E [µ1(Xi)p(Xi)]

2 (30)

V [(1− Ti)WiYi] = E
[
(1− Ti)W 2

i Y
2
i

]
− E [(1− Ti)WiYi]

2 = E
[
E
[
(1− Ti)W 2

i Yi(0)2|Xi
]]
− E [µ0(Xi)p(Xi)]

2 (31)

= E
[
σ2

0(Xi)
p(Xi)

2

1− p(Xi)

]
+ E

[
µ0(Xi)

2 p(Xi)
2

1− p(Xi)

]
− E [µ0(Xi)p(Xi)]

2 (32)

C[YiTi , (1− Ti)WiYi] = −E[µ1(Xi)p(Xi)]E[µ0(Xi)p(Xi)] (33)

V [YiTi − Yi(1− Ti)Wi] = V [YiTi] + V [Yi(1− Ti)Wi]− 2C[YiTi , Yi(1− Ti)Wi] (34)

= E
[
σ2

1(Xi)p(Xi) + σ2
0(Xi)

p(Xi)
2

1− p(Xi)

]
+ E

[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
− (qθ)2 (35)

≡ A+ E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
− (qθ)2 (36)

C [τ(Xi), µ0(Xi)|Ti = 1] =
1

q

{
E [µ1(Xi)µ0(Xi)p(Xi)]− E

[
µ0(Xi)

2p(Xi)
]
− θE [µ0(Xi)p(Xi)]

}
(37)

2 The Unnormalized Estimated Weights Estimator with Parametric Logit, θ̂U,pw

Let γ = (θ, π′, q)′ denote the TOT parameter, the logit coefficients, and and the probability of treatment. The moment function
and its derivative matrix are given by

mi(γ) =

 1
q

(TiYi − (1− Ti)WiYi)− θ
(Ti − Λi)Zi
Ti − q

 and Mi(γ) = −

 1 1
q
(1− Ti)WiYiZ

′
i

1
q2

(TiYi − (1− Ti)WiYi)

0 Λi(1− Λi)ZiZ
′
i 0

0 0 1

 (38)

where as before we write Λi = Λ(Z′iπ). Evaluated at γ∗ and assuming no misspecification of the propensity score, the expectation
of the derivative and the variance of the moments are given by

M = −

(
1 c′0 θ/q
0 I 0
0 0 1

)
and Σ =

 a d′ + c′0 b
d+ c0 I c
b c′ q(1− q)

 (39)

respectively, where as before a = V [YiTi − Yi(1− Ti)Wi]/q
2 and b = E[µ1(Xi)p(Xi)]/q − qθ, and where now we additionally define

ct = E [µt(Xi)p(Xi)Zi] /q (40)

c = E [p(Xi)(1− p(Xi))Zi] (41)

d = E [p(Xi)(1− p(Xi))τ(Xi)Zi] /q (42)

So the asymptotic variance of γ̂ is

M−1ΣM ′−1 =

 1 −c′0I−1 −θ/q
0 I−1 0
0 0 1

 a d′ + c′0 b
d+ c0 I c
b c′ q(1− q)

 1 0 0
−I−1c0 I−1 0
−θ/q 0 1

 (43)

=

 1 −c′0I−1 −θ/q
0 I−1 0
0 0 1

 a− (d′ + c′0)I−1 − bθ/q (d′ + c′0)I−1 b
d− cθ/q I c
b− c′I−1c0 − θ(1− q) c′I−1 q(1− q)

 (44)

=

 a− 2b θ
q

+ θ2 1−q
q
− c′0I−1c0 − 2d′I−1c0 + 2 θ

q
c′I−1c0 d′I−1 − θ

q
c′I−1 b− c′0I−1c− θ(1− q)

I−1d− θ
q
I−1c I−1 I−1c

b− c′I−1c0 − θ(1− q) c′I−1 q(1− q)

 (45)

It will be useful to note that

C [τ(Xi), (1− p(Xi))Zi|Ti = 1] =
1

q
E [(τ(Xi)− θ)p(Xi)(1− p(Xi))Zi] = d− θ

q
c ≡ e (46)
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The asymptotic variance of θ̂U,pw is thus

AV (θ̂U,pw) = a− 2b
θ

q
+ θ2 1− q

q
− c′0I−1c0 − 2d′I−1c0 + 2

θ

q
c′I−1c0 = AV (θ̂U,tw)− c′0I−1c0 − 2d′I−1c0 + 2

θ

q
c′I−1c0 (47)

= AV (θ̂U,tw)− c′0I−1c0 − 2e′I−1c0 (48)

= Ωθ (49)

+
1

q2
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
− c0I−1c0 (50)

+ 2
1

q
C [τ(Xi), µ0(Xi)|Ti = 1]− 2e′I−1c0 (51)

3 The Unnormalized Estimated Weights Estimator with Fully Saturated Logit, θ̂U,ew

Now suppose that the covariates Xi are discrete, taking on values x1, x2, . . . , xJ with P (Xi = xj) = ηj . Then we have

c′0I−1c0 =
1

q2

∑
j

η2
jµ0(xj)

2p(xj)
2

ηjp(xj)(1− p(xj))
=

1

q2

∑
j

ηjµ0(xj)
2 p(xj)

1− p(xj)
(52)

=
1

q2
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
(53)

1

q
C [τ(Xi), µ0(Xi)|Ti = 1] =

1

q2
E [(τ(Xi)− θ)µ0(Xi)p(Xi)] (54)

=
1

q2

∑
j

ηj(τ(xj)− θ)µ0(xj)p(xj) (55)

=
1

q2

∑
j

η2
j (τ(xj)− θ)µ0(xj)p(xj)

2(1− p(xj))
ηjp(xj)(1− p(xj))

(56)

=
1

q2
E [(τ(Xi)− θ) p(Xi)(1− p(Xi))Zi] I−1E [µ0(Xi)p(Xi)] (57)

= e′I−1E [µ0(Xi)Zi|Ti = 1] (58)

Because of these results, the terms in equations (50) and (51) both cancel out, and the asymptotic variance of θ̂U,ew is simply

AV (θ̂U,ew) = Ωθ (59)

4 The Normalized True Weights Estimator, θ̂N,tw

The normalized true weights estimator is given by

θ̂N,tw =

∑
i TiYi∑
i Ti

−
∑
j(1− Tj)WjYj∑
j(1− Tj)Wj

(60)

Define αt = E [µt(Xi)p(Xi)] /q = E[Yi(t)|Ti = 1] and γ = (θ, α0)′ and consider the moments and their derivative matrix

mi(γ) = Vi(Yi − θTi − α0)

(
Ti
1

)
and Mi(γ) = −Vi

(
Ti Ti
Ti 1

)
(61)

where Vi = Ti+(1−Ti)Wi. These are simply the first- and second-order conditions for a least squares regression of Yi on a constant

and Ti, weighted by Vi. Solving this GMM problem yields the estimate θ̂N,tw and the counterfactual mean α̂0. Evaluated at γ∗ and
assuming no misspecification of the propensity score, the expectation of the derivative and the variance of the moments are given by

M = −q
(

1 1
1 2

)
and Σ =

(
Σ11 Σ12

Σ12 Σ22

)
(62)

and so the asymptotic variance of γ̂ is given by

M−1ΣM ′−1 =
1

q2

(
2 −1
−1 1

)(
Σ11 Σ12

Σ12 Σ22

)(
2 −1
−1 1

)
(63)

=
1

q2

(
4Σ11 − 4Σ12 + Σ22 3Σ12 − 2Σ11 − Σ22

3Σ12 − 2Σ11 − Σ22 Σ22 − 2Σ12 + Σ11

)
(64)

=
1

q2

(
Σ22 3Σ12 − 2Σ11 − Σ22

3Σ12 − 2Σ11 − Σ22 Σ22 − 2Σ12 + Σ11

)
(65)
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where we make use of the fact that since T 2
i = Ti, Σ11 = E

[
m2
i1

]
= E [mi1mi2] = Σ12, where the expectations are evaluated at the

true γ∗. To compute Σ22, we make use of the following facts:

V 2
i (Yi − θTi − α0)2 = V 2

i

(
Y 2
i + θ2Ti + α2

0 − 2θTiYi − 2α0Yi + 2α0θTi
)

(66)

E
[
V 2
i Y

2
i

]
= E

[
TiYi(1)2 + (1− Ti)Yi(0)2W 2

i

]
(67)

= E
[
σ2

1(Xi)p(Xi) + σ2
0(Xi)

p(Xi)
2

1− p(Xi)

]
+ E

[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
(68)

≡ q2A+ E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
(69)

θ2E
[
V 2
i Ti

]
= θ2q (70)

α2
0E
[
V 2
i

]
= α2

0E
[
Ti + (1− Ti)W 2

i

]
= α2

0q + α2
0E
[
p(Xi)

2

1− p(Xi)

]
= α2

0E
[

p(Xi)

1− p(Xi)

]
(71)

−2θE
[
V 2
i TiYi

]
= −2θE [µ1(Xi)p(Xi)] = −2θα1q (72)

−2α0E
[
V 2
i Yi

]
= −2α0E [µ1(Xi)p(Xi)]− 2α0E

[
µ0(Xi)

p(Xi)
2

1− p(Xi)

]
(73)

= −2α0α1q − 2α0E
[
µ0(Xi)

p(Xi)

1− p(Xi)

]
+ 2α0E [µ0(Xi)p(Xi)] (74)

= −2α0E
[
µ0(Xi)

p(Xi)

1− p(Xi)

]
− 2α0θq (75)

2α0θE
[
V 2
i Ti

]
= 2α0θq (76)

Adding these terms together yields

Σ22 = q2A+ E
[
µ1(Xi)

2p(Xi) + µ0(Xi)
2 p(Xi)

2

1− p(Xi)

]
+ θ2q + α2

0E
[

p(Xi)

1− p(Xi)

]
− 2α1θq − 2α0E

[
µ0(Xi)

p(Xi)

1− p(Xi)

]
(77)

= q2A+ E
[
µ1(Xi)

2p(Xi)− µ0(Xi)
2p(Xi)

]
+ E

[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
+ θ2q − 2α1θq (78)

= q2A+ E
[
µ1(Xi)

2p(Xi)− µ0(Xi)
2p(Xi)

]
+ E

[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(79)

+
(
α2

1 − 2α1α0 + α2
0

)
q − 2α2

1q + 2α1α0q (80)

= q2A+ E
[
µ1(Xi)

2p(Xi)− µ0(Xi)
2p(Xi)

]
+ E

[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
− α2

1q + α2
0q (81)

= q2A+ E
[
(µ1(Xi)− α1)2 p(Xi)

]
− E

[
(µ0(Xi)− α0)2 p(Xi)

]
+ E

[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(82)

= q2A+ qV [µ1(Xi)|Ti = 1]− qV [µ0(Xi)|Ti = 1] + E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(83)

= q2Ωθ − qV [τ(Xi)|Ti = 1] + qV [µ1(Xi)|Ti = 1]− qV [µ0(Xi)|Ti = 1] + E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(84)

= q2Ωθ + 2qC [τ(Xi), µ0(Xi)|Ti = 1] + E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(85)

Although we do not need it here, a similar analysis shows that

Σ11 = E
[
σ2

1(Xi)p(Xi)
]

+ E
[
p(Xi) (µ1(Xi)− α1)2] (86)

These results mean that the asymptotic variance of θ̂N,tw is given by

AV (θ̂N,tw) = Ωθ +
1

q2
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
+ 2

1

q
C [τ(Xi), µ0(Xi)|Ti = 1] (87)

5 The Normalized Estimated Weights Estimator with Parametric Logit, θ̂N,pw

Let γ = (θ, α0, π
′)′. The moment function and its derivative matrix are given by

mi(γ) =

(
Vi(Yi − θTi − α0)Ti
Vi(Yi − θTi − α0)

(Ti − Λi)Zi

)
and Mi(γ) = −

 ViTi ViTi 0
ViTi Vi − (Yi(0)− α0) (1− Ti) Λi

1−Λi
Zi

0 0 Λi(1− Λi)ZiZ
′
i

 (88)

where as before Vi = Ti + (1 − Ti)Wi. Evaluated at γ∗ and assuming no misspecification of the propensity score, the expectation
of the derivative and the variance of the moments are given by

M = −q

 1 1 0
1 2 − 1

q
f ′0

0 0 1
q
I

 and Σ =

 Σ11 Σ11 g′1
Σ11 q2AV (θ̂N,tw) h′

g1 h I

 (89)
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where for t ∈ {0, 1} we define

ft = E [p(Xi) (µt(Xi)− αt)Zi] (90)

gt = E [p(Xi)(1− p(Xi))(µt(Xi)− αt)Zi] (91)

g1 + g0 − f0 = h (92)

With this notation, note that g1 − g0 = E [p(Xi)(1− p(Xi))(τ(Xi)− θ)Zi]. The results on variance are calculated as

Σ13 = E [Vi (Yi − θTi − α0)Ti (Ti − Λi)Zi] ≡ E [ViεiTi (Ti − Λi)Zi] = E [Tiεi (1− Λi)Zi] (93)

= E [Ti (TiYi(1) + (1− Ti)Yi(0)− θTi − α0) (1− Λi)Zi] = E [(TiYi(1)− θTi − α0Ti) (1− Λi)Zi] (94)

= E [Ti(1− Λi)(Yi(1)− (θ + α0))Zi] (95)

= E [p(Xi)(1− p(Xi)) (µ1(Xi)− α1)Zi] (96)

≡ g1 (97)

Σ23 = E [Vi (Yi − θTi − α0) (Ti − Λi)Zi] = E [Tiεi (1− Λi)Zi] + E [(1− Ti)Wiεi (Ti − Λi)Zi] (98)

= Σ13 + E [(1− Ti)Wiεi (Ti − Λi)Zi] = Σ13 − E [(1− Ti)WiεiΛiZi] (99)

= Σ13 − E [(1− Ti)Wi (TiYi(1) + (1− Ti)Yi(0)− θTi − α0) ΛiZi] = Σ13 − E [(1− Ti)Wi (Yi(0)− α0) ΛiZi] (100)

= Σ13 − E
[
p(Xi)

2 (µ0(Xi)− α0)Zi
]

(101)

= E [p(Xi)(1− p(Xi)) (µ1(Xi)− α1)Zi] + E [p(Xi)(1− p(Xi)) (µ0(Xi)− α0)Zi]− f0 (102)

≡ h = g1 + g0 − f0 (103)

The asymptotic variance of γ̂ is thus given by

M−1ΣM ′−1 =
1

q2

 2 −1 −f ′0I−1

−1 1 f ′0I−1

0 0 qI−1

 Σ11 Σ11 g′1
Σ11 q2AV (θ̂N,tw) h′

g1 h I

 2 −1 0
−1 1 0

−I−1f0 I−1f0 qI−1

 (104)

=
1

q2

 2 −1 −f ′0I−1

−1 1 f ′0I−1

0 0 qI−1

 Σ11 − g′1I−1f0 g′1I−1f0 qg′1I−1

2Σ11 − q2AV (θ̂N,tw)− h′I−1f0 −Σ11 + q2AV (θ̂N,tw) + h′I−1f0 qh′I−1

2g1 − h− f0 −g1 + h+ f0 qI


which shows that

AV (θ̂N,pw) =
1

q2

{
2
(
Σ11 − g′1I−1f0

)
−
(

2Σ11 − q2AV (θ̂N,tw)− h′I−1f0

)
− f ′0I−1 (2g1 − h− f0)

}
(105)

= AV (θ̂N,tw) +
1

q2
(2h− 4g1 + f0)′ I−1f0 (106)

= AV (θ̂N,tw)− 1

q2
f ′0I−1f0 − 2

1

q2
(g1 − g0)′I−1f0 (107)

= Ωθ (108)

+
1

q2
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
− 1

q2
f ′0I−1f0 (109)

+ 2
1

q
C [τ(Xi), µ0(Xi)|Ti = 1]− 2

1

q2
(g1 − g0)′ I−1f0 (110)

6 The Normalized Estimated Weights Estimator with Fully Saturated Logit, θ̂N,ew

Now suppose that the covariates Xi are discrete, as before. Then we have

f ′0I−1f0 =
∑
j

η2
j p(xj)

2 (µ0(xj)− α0)2

ηjp(xj)(1− p(xj))
=
∑
j

ηj (µ0(xj)− α0)2 p(xj)

1− p(xj)
(111)

= E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(112)

(g1 − g0)′I−1f0 =
∑
j

η2
j p(xj)

2(1− p(xj)) (τ(xj)− θ) (µ0(xj)− α0)

ηjp(xj)(1− p(xj))
(113)

=
∑
j

ηjp(xj) (τ(xj)− θ) (µ0(xj)− α0) = E [p(Xi) (τ(Xi)− θ) (µ0(Xi)− α0)] (114)

= qC [τ(Xi), µ0(Xi)|Ti = 1] (115)

Because of these results, the terms in equations (109) and (110) both cancel out, and the asymptotic variance of θ̂N,ew is simply

AV (θ̂N,ew) = Ωθ (116)
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7 GPE Reweighting with Parametric Logit, θ̂GPE,pw

Define γ = (θ, α0, π
′)′. The moment function and its derivative matrix are given by

mi(γ) =

 Vi(Yi − θTi − α0)Ti
Vi(Yi − θTi − α0)(
Ti − (1− Ti) Λi

1−Λi

)
Zi

 and Mi(γ) = −

 ViTi ViTi 0
ViTi Vi − (Yi(0)− α0) (1− Ti) Λi

1−Λi
Z′i

0 0 (1− Ti) Λi
1−Λi

ZiZ
′
i

 (117)

where as before Vi = Ti + (1 − Ti)Wi. Evaluated at γ∗ and assuming no misspecification of the propensity score, the expectation
of the derivative and the variance of the moments are given by

M = −q

 1 1 0
1 2 − 1

q
f ′0

0 0 1
q
B

 and Σ =

 Σ11 Σ11 f ′1
Σ11 q2AV (θ̂N,tw) (f1 + f0 − r)′
f1 f1 + f0 − r0 C

 (118)

where B = E[p(Xi)ZiZ
′
i], C = E

[
p(Xi)

1−p(Xi)
ZiZ

′
i

]
, and r0 = E

[
p(Xi)

1−p(Xi)
(µ0(Xi)− α0)Zi

]
. The results on variance are calculated as

Σ13 = E
[
Vi(Yi − θTi − α0)Ti

(
Ti − (1− Ti)

Λi
1− Λi

)
Zi

]
(119)

= E [ViTi(Yi − θTi − α0)Zi] = E [Ti(Yi(1)− α1)Zi] = E [p(Xi)(µ1(Xi)− α1)Zi] = f1 (120)

Σ23 = E
[
Vi(Yi − θTi − α0)

(
Ti − (1− Ti)

Λi
1− Λi

)
Zi

]
(121)

= E [ViTi(Yi − θTi − α0)Zi]− E
[
Vi(1− Ti)

Λi
1− Λi

(Yi − θTi − α0)Zi

]
(122)

= f1 − E
[
(1− Ti)

Λ2
i

(1− Λi)2
(Yi(0)− α0)Zi

]
= f1 − E

[
p(Xi)

2

1− p(Xi)
(µ0(Xi)− α0)Zi

]
(123)

= f1 − E
[

p(Xi)

1− p(Xi)
(µ0(Xi)− α0)Zi

]
+ E [p(Xi)(µ0(Xi)− α0)Zi] (124)

= f1 + f0 − E
[

p(Xi)

1− p(Xi)
(µ0(Xi)− α0)Zi

]
≡ f1 + f0 − r0 (125)

where we use the fact that ViTi = Ti, Vi(1− Ti) = (1− Ti)Λi/(1− Λi), and θ + α0 = α1.
The asymptotic variance of γ̂ is thus given by M−1ΣM ′−1, or

1

q2

 2 −1 −f ′0B−1

−1 1 f ′0B
−1

0 0 qB−1

 Σ11 Σ11 f ′1
Σ11 q2AV (θ̂N,tw) (f1 + f0 − r0)′

f1 f1 + f0 − r0 C

 2 −1 0
−1 1 0

−B−1f0 B−1f0 qB−1

 (126)

=
1

q2

 2 −1 −f ′0B−1

−1 1 f ′0B
−1

0 0 qB−1

 (127)

×

 Σ11 − f ′1B−1f0 f ′1B
−1f0 qf ′1B

−1

2Σ11 − q2AV (θ̂N,tw)− (f1 + f0 − r0)′B−1f0 −Σ11 + q2AV (θ̂N,tw) + (f1 + f0 − r0)′B−1f0 q (f1 + f0 − r0)′B−1

f1 − f0 + r0 − CB−1f0 f0 − r0 + CB−1f0 qCB−1


and the asymptotic variance of θ̂GPE,pw is then

AV (θ̂GPE,pw) =
1

q2

{
2
(
Σ11 − f ′1B−1f0

)
−
(

2Σ11 − q2AV (θ̂N,tw)− (f1 + f0 − r0)′B−1f0

)
− f ′0B−1 (f1 − f0 + r0 − CB−1f0

)}
= AV (θ̂N,tw) +

1

q2

{
−2(f1 − f0)′B−1f0 − 2r′0B

−1f0 + f ′0B
−1CB−1f0

}
(128)

= Ωθ (129)

+
1

q2
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
+

1

q2
f ′0B

−1CB−1f0 − 2
1

q2
r′0B

−1f0 (130)

+
1

q
C [τ(Xi), µ0(Xi)|Ti = 1]− 2

1

q2
(f1 − f0)′B−1f0 (131)
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8 GPE Reweighting with Fully Saturated Model, θ̂GPE,ew

Now suppose that the covariates Xi are discrete, as before. Then we have

B−1CB−1 = diag

{
1

ηjp(xj)

}
diag

{
ηj

p(xj)

1− p(xj)

}
diag

{
1

ηjp(xj)

}
= diag

{
1

ηjp(xj)(1− p(xj))

}
(132)

f ′tB
−1f0 =

∑
j

η2
j p(xj)

2(µt(xj)− αt)(µ0(xj)− α0)

ηjp(xj)
=
∑
j

ηjp(xj)(µt(xj)− αt)(µ0(xj)− α0) (133)

= E [p(Xi)(µt(Xi)− αt)(µ0(Xi)− α0)] = qC [µt(Xi), µ0(Xi)|Ti = 1] (134)

f ′0B
−1CB−1f0 =

∑
j

η2
j p(xj)

2 (µ0(xj)− α0)2

ηjp(xj)(1− p(xj))
=
∑
j

ηj
p(xj)

1− p(xj)
(µ0(xj)− α0)2 (135)

= E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(136)

r′0B
−1f0 =

∑
j

η2
j (µ0(xj)− α0)2p(xj)

2/(1− p(xj))
ηjp(xj)

=
∑
j

ηj
p(xj)

1− p(xj)
(µ0(xj)− α0)2 (137)

= E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(138)

so that

− 1

q2
2(f1 − f0)′B−1f0 = −1

q
C [τ(Xi), µ0(Xi)|Ti = 1] (139)

f ′0B
−1CB−1f0 − 2r0B

−1f0 = −E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
(140)

Because of these results, the terms in equations (130) and (131) cancel out, and the asymptotic variance of θ̂GPE,ew is simply

AV (θ̂GPE,ew) = Ωθ (141)

9 Matching on a Scalar Covariate

As shown in Abadie and Imbens (2006), nearest neighbor matching on a scalar covariate has variance conditional on X and T of

V
[
θ̃|X,T

]
=

1

n2
1

∑
i

(
Ti − (1− Ti)

Kk(i)

k

)2

σ2
Ti

(Xi) (142)

=
1

n2
1

∑
i

(
Tiσ

2
1(Xi) + (1− Ti)σ2

0(Xi)
Kk(i)2

k2

)
(143)

where X is the matrix with ith row X ′i, T is the vector with ith row Ti, Kk(i) is the number of times unit i is matched given that
k matches per unit are used, and n1 is the number of treated units. Since n1/n converges almost surely to q, we have

q2nV
[
θ̃|X,T

]
=

1

n

∑
i

(
Tiσ

2
1(Xi) + (1− Ti)σ2

0(Xi)
Kk(i)2

k2

)
+ op(1) (144)

The (marginal) asymptotic variance of θ̃ is the expectation of nV
[
θ̃|X,T

]
over X and T, plus the variance of the conditional

expectation. To compute the expectation of nV
[
θ̃|X,T

]
, we use the fact that

E
[
Kk(i)2|Ti = 0, Xi = x

]
= k

p(x)

1− p(x)
+
k(2k + 1)

2

(
p(x)

1− p(x)

)2

+ o(1) (145)

as shown by Abadie and Imbens (2006) in their supplemental proofs. Then, following the logic described there, we have

q2AV
(
θ̃
)

= q2E
[
nV
[
θ̃|X,T

]]
+ E

[
(τ(Xi)− θ)2 p(Xi)

]
(146)

= E
[
Tiσ

2
1(Xi) + (1− Ti)σ2

0(Xi)
Kk(i)2

k2

]
+ E

[
(τ(Xi)− θ)2 p(Xi)

]
(147)

= E

[
p(Xi)σ

2
1(Xi) + (1− p(Xi))σ2

0(Xi)
1

k2

(
k

p(Xi)

1− p(Xi)
+
k(2k + 1)

2

(
p(Xi)

1− p(Xi)

)2
)]

(148)

+E
[
(τ(Xi)− θ)2 p(Xi)

]
(149)

= E
[
p(Xi)σ

2
1(Xi) +

1

k
σ2

0(Xi)

(
p(Xi) +

2k + 1

2

p(Xi)
2

1− p(Xi)

)]
+ E

[
(τ(Xi)− θ)2 p(Xi)

]
(150)

= E
[
p(Xi)σ

2
1(Xi) +

p(Xi)
2

1− p(Xi)
σ2

0(Xi)

]
+

1

2k
E
[
σ2

0(Xi)

(
p(Xi)

2

1− p(Xi)
+ 2p(Xi)

)]
+ E

[
(τ(Xi)− θ)2 p(Xi)

]
(151)

= q2Ωθ +
1

2k
E
[
σ2

0(Xi)

(
p(Xi)

1− p(Xi)
+ p(Xi)

)]
(152)
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10 Puzzle # 1 of Section III: Normalized Reweighting and Nearest Neighbor Matching

Recall that the Frölich (2004) DGPs involve matching on a single continuous covariate in DGPs with homogenous treatment effects
and a homoscedastic outcome equation error term with variance σ2. For this special case, we have

Ωθ =
1

q2
σ2E

[
p(Xi)

1− p(Xi)

]
(153)

and the asymptotic variance of normalized reweighting under homogenous treatment effects and homoskedasticity is

AV
(
θ̂N,pw

)
= ã+ Ωθ = ã+ b̃σ2 (154)

where ã =
1

q2
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
− 1

q2
E
[
p(Xi) (µ0(Xi)− α0)Z′i

]
I−1E [p(Xi) (µ0(Xi)− α0)Zi] (155)

and b̃ = 1
q2
E
[

p(Xi)
1−p(Xi)

]
. The asymptotic variance of nearest neighbor matching under the same conditions is given by

AV
(
θ̃
)

= Ωθ

(
1 +

1

2k

)
+

1

2k

σ2

q
=

{
b̃

(
1 +

1

2k

)
+

1

2k

1

q

}
σ2 (156)

Thus, under homoskedasticity and constant treatment effects, we have

AV
(
θ̃
)
−AV

(
θ̂N
)

=
1

2k

(
b̃+

1

q

)
σ2 − ã (157)

This implies that under homoskedasticity and constant treatment effects nearest neighbor matching on a scalar covariate has a
larger asymptotic variance than normalized reweighting if and only if

σ2 > 2k ã/(̃b+ 1/q) (158)

= 2k
E
[
(µ0(Xi)− α0)2 p(Xi)

1−p(Xi)

]
− E[p(Xi) (µ0(Xi)− α0)Z′i]I−1E[p(Xi) (µ0(Xi)− α0)Zi]

E
[ p(Xi)

1−p(Xi)
+ p(Xi)

] (159)

For pair matching (k = 1), this condition is met for all 30 Frölich DGPs for σ2 = 0.1, but is only met for some of these DGPs when
σ2 = 0.01.

11 Puzzle # 2 of Section III: Normalized and Unnormalized Reweighting

From the work above, we know that the asymptotic variance of normalized reweighting is given by

AV
(
θ̂N
)

= Ωθ +
1

q2
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
+ 2

1

q
C [τ(Xi), µ0(Xi)|Ti = 1] (160)

− 1

q2
E [p(Xi)(µ0(Xi)− α0)Zi]

′ I−1E [p(Xi)(µ0(Xi)− α0)Zi] (161)

− 2
1

q2
E [p(Xi)(1− p(Xi))(τ(Xi)− θ)Zi] I−1E [(µ0(Xi)− α0)p(Xi)Zi] (162)

where Ωθ = 1
q2
E
[
σ2

1(Xi)p(Xi) + σ2
0(Xi)

p(Xi)
2

1−p(Xi)
+ (τ(Xi)− θ)2p(Xi)

]
, Zi is the vector of predictors for the logit model, τ(Xi) =

µ1(Xi) − µ0(Xi), α0 = E [µ0(Xi)|Ti = 1], and I = E [p(Xi)(1− p(Xi))ZiZ′i] is the information matrix for the logit model. The
asymptotic variance of unnormalized reweighting has precisely the form given in equations (160), (161), and (162), but with zero
replacing α0.

This variance expression is somewhat complex. We next briefly discuss each of the five terms. The first term, Ωθ, is common
to reweighting and matching estimators and is a particular type of efficiency bound first derived by Hahn (1998) for this problem
and hence non-negative. In typical empirical DGPs, this term is the largest in magnitude of the five terms. The second term is
also non-negative, but can be zero for normalized reweighting when µ0(x) is constant in x, because then µ0(x) = α0 for every x
in the support of Xi. For unnormalized reweighting, the second term can only be zero if µ0(x) is zero for every x in the support
of Xi. The third term can either be positive or negative and pertains to heterogeneity in treatment effects. It is zero when the
treatment effect is homogenous. Reweighting using the known propensity score, rather than the estimated propensity score, has an
asymptotic variance given by these first three terms. The fourth and fifth terms at least partially offset the second and third terms,
respectively. As noted above, in some specialized circumstances, they exactly offset the second and third terms, in which case the
asymptotic variance of reweighting is merely Ωθ.

Having briefly discussed the terms in this variance expression, we now return resolving the puzzle that normalized reweighting ex-
hibits much lower variance in the Frölich (2004) simulations than unnormalized reweighting. This result has little to do with the third
and fifth terms, since the Frölich DGPs have homogenous treatment effects, leading both terms to be zero. A potential explanation
for this pattern is the second term. In particular, the second term for normalized reweighting, E

[
(µ0(Xi)− α0)2 p(Xi)

/
(1− p(Xi))

]
,

will often be smaller than the second term for unnormalized reweighting, E
[
µ0(Xi)

2p(Xi)
/

(1− p(Xi))
]
. For example, in the context

of the 30 Frölich DGPs, the latter is 6 to 42 times as large as the former.
However, since we are studying the performance of reweighting using an estimated propensity score rather than the true propen-

sity score, the fourth term factors into the asymptotic variance as well, and the fourth term typically compensates for the second
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term. That is, the relevant quantity for the difference in the overall asymptotic variances is the difference in the sum of the second
and fourth terms. In particular, for the special case of homogenous treatment effects, we have

q2
(
AV

(
θ̂U
)
−AV

(
θ̂N
))

(163)

=

(
E
[
µ0(Xi)

2 p(Xi)

1− p(Xi)

]
− E [p(Xi)µ0(Xi)Zi]

′ I−1E [p(Xi)µ0(Xi)Zi]

)
(164)

−
(
E
[
(µ0(Xi)− α0)2 p(Xi)

1− p(Xi)

]
− E [p(Xi) (µ0(Xi)− α0)Zi]

′ I−1E [p(Xi) (µ0(Xi)− α0)Zi]

)
(165)

We computed this difference for the 30 Frölich designs. In 20 cases, we find that while the asymptotic variance of normalized reweight-
ing is below that of unnormalized reweighting. In 10 cases, the pattern is the opposite. This holds for both σ2 = 0.01 and σ2 = 0.10.

Part IC: Finite Semiparametric Efficiency Bound

As noted in Chamberlain (1986),
√
n-consistent semiparametric estimators for a given DGP exist if and only if the semiparametric

efficiency bound (SEB) is finite. Since the SEB is the supremum of parametric efficiency bounds over a class of parametric models,
establishing that the SEB is finite also establishes that the parametric efficiency bound is finite. We next show the finiteness of the
SEB established by Hahn (1998) for TOT, assuming an unknown propensity score, for the special case of the DGPs studied in the
main text. The SEB for this case is given by

Ωθ =
1

q2
E
[
σ2

1(Xi)p(Xi)
]

+
1

q2
E
[
σ2

0(Xi)p(Xi)
2/(1− p(Xi))

]
+

1

q2
E
[
(τ(Xi)− θ)2 p(Xi)

]
(166)

Consider first the case of the Frölich (2004) DGPs. These DGPs have homoskedastic errors and homogenous treatment effects,
which means that

Ωθ =
σ2

q2
E [p(Xi)] +

σ2

q2
E
[
p(Xi)

2/(1− p(Xi))
]

=
σ2

q2
E [p(Xi)] +

σ2

q2
E
[

p(Xi)

1− p(Xi)
− p(Xi)

]
(167)

=
σ2

q2
E
[

p(Xi)

1− p(Xi)

]
(168)

Next, note that when α + β < 1, strict overlap is satisfied and Ωθ is immediately finite. However, when α + β = 1, we have the

intermediary case where strict overlap is violated but overlap is satisfied. For such a case, we must show that E
[

p(Xi)
1−p(Xi)

]
is finite.

To study this case in detail, set α = 1− β, and note that

E
[

p(Xi)

1− p(Xi)

]
= E

[
1− β + βΛ(

√
2Xi)

β − βΛ(
√

2Xi)

]
= E

[
1− β

(
1− Λ(

√
2Xi)

)
β
(
1− Λ(

√
2Xi)

) ]
(169)

=
1

β
E
[

1

1− Λ(
√

2Xi)

]
− 1 (170)

=
1

β
E
[
1 + exp(

√
2Xi)

]
− 1 (171)

where we recall thatXi is distributed standard normal. This is then a standard calculation for the mean of the exponential of a normal
with mean zero and variance 4, which is known to be finite. Consequently, the SEB for all 30 of the Frölich (2004) DGPs is finite.

Consider next the case of the NSW DGPs. There are two such DGPs. In the first such DGP, Xi is distributed discrete and for each
such Xi, 0 < p(Xi) < 1. Both DGPs have homoskedastic errors and homogenous treatment effects, so that we need only demonstrate

that E
[

p(Xi)
1−p(Xi)

]
is finite. For the first DGP with discrete covariates, this expectation is immediately finite since 0 < p(x) < 1 for

every x in the support of Xi, by virtue of the logit model used to model the probability of treatment. For the second DGP with contin-
uous covariates, this expectation is a weighted average of the analogous conditional expectations, one for each group. Each group has

p(Xi) = Λ(c0 + c1Yi) (172)

for different, but finite, values of c0 and c1, where Yi is distributed normal (here, Yi is a scalar which is a linear combination of
normal covariates). For each such group, the conditional expectation is finite, since

E
[

p(Xi)

1− p(Xi)

]
= E [exp(c0 + c1Yi)] (173)

which again is a standard calculation in normal theory for the mean of the exponential of a normal random variable.
Consider finally the case of the CPS DGPs. There are 7 such DGPs. Each such DGP is characterized by discrete covariates Xi

with 0 < p(x) < 1 for every x in the support of Xi. For these cases, Ωθ is immediately finite.
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Part ID: Pseudo-Random Number Generation

As noted in the text, we do all of our computations in Stata, version 11.0. Additionally, much of the code we use is based on the
Stata’s matrix programming sublanguage, Mata. Uniform pseudo-random variables were generated using the uniform() command,
and Gaussian pseudo-random variables were generated using invnorm(uniform()), as opposed to the recommended rnormal()
command. This last method is Stata’s implementation of the Marsaglia sawtooth method (Knuth 1998). As of the time of this
writing, an error in Stata’s implementation of this method leads the sequence of signs of pseudo-random numbers generated by
rnormal() to be nearly identical for different seeds (personal communications, William Gould and Owen Ozier). This is potentially
problematic for our purposes, because we use multiple seeds (approximately 60) in order to take advantage of multiple processors.
This embarassingly parallel approach is essential to keeping computing times under a month. The problem with signs in rnormal()
was first brought to our attention by Owen Ozier. At the time, we had done all of our simulations using the rnormal() command.
To ensure that our results were not sensitive to this software problem, we re-ran all of our computations. The simulation estimates
of bias and variance quantities differed by minor amounts, with the final reported digit changing for only a few entries.

We note that Stata’s uniform() random number generator passes Marsaglia’s DIEHARD test sequence and that the numerical
approximation errors associated with invnorm, which Marsaglia’s sawtooth method would in theory avoid, are trivial except in the
far tails.1 As a partial test of the proposition that errors in the tails of invnorm are not worth worrying about in this context, we
compared bias and variance estimates for normalized reweighting based on invnorm(uniform()) with bias and variance estimates
based on Marsaglia’s polar method. This method generates a pair (U, V ) distributed uniformly in the unit circle (by sequentially
generating pairs distributed uniformly in the unit square centered at zero and discarding those falling outside of the interior of the
unit circle), computes S = U2 + V 2, and then generates a pair (X,Y ) according to X = U

√
− ln(S)/S and Y = V

√
− ln(S)/S.

Constructed in this manner, X and Y are independent pseudo-random standard Gaussians, and no approximation to the Gaussian
inverse distribution function is required. The estimated bias and variance quantities obtained using this method are nearly the same
as those obtained using the simpler invnorm(uniform()) method.

Part IE: Existence of Moments

We assume throughout the manuscript that each replication for a given estimator is drawn randomly with replacement from
some distribution characterized by finite mean and variance. One implication of the assumption of finite mean and variance is that
the variance of sample means of the estimator based on k replications should be proportional to k−1. A simple way to informally
examine this implication is as follows. First, randomly assign estimator replications to groups and subgroups so that for group k,
there are m subgroups (where m is a fixed number chosen by the researcher), and there are k replications in each subgroup. That
is, group 1 has m subgroups of size 1, group 2 has m subgroups of size 2, group 3 has m subgroups of size 3, and so on. Second,
construct sample means of the estimator separately for each subgroup. For a given group k, this creates m sample means, each of
which is based on k replications. Third, for each group construct the sample variance of those sample means. The sample variance
for group k approximates the population variance for group k, which under a hypothesis of finite mean and variance is proportional
to k−1. This suggests the fourth step, which is to simply regress the sample variances on k−1. The constant term can be suppressed,
or it can be estimated in order to verify that it has little explanatory power.

Web Appendix Table 2 presents the R2 from both types of regressions for the Frölich Design (Design 1, Curve 1), and for the
NSW Design (empirical distribution). We choose these designs because for both strict overlap is violated, and it is in such a context
that existence of moments is more likely to be a problem. These tests use m = 128.2 Columns A and B correspond to regressions
without and with a constant term, respectively.

To get a sense of what kinds of R2 values are expected when neither the variance nor the mean exists, Web Appendix Table 3
presents the 5th and 95th percentiles of R2 for Student’s t distribution with degrees of freedom one through six, for both versions
of the R2 statistic. The percentiles reported hold fixed six particular groups of 10,000 replications (one for each degree of freedom);
the percentiles are computed over 10,000 randomized permutations of the group-subgroup structure.

These results indicate that the high R2 values in Web Appendix Table 2 are unlikely to occur for a distribution such as Student’s
t, unless the degrees of freedom is 3 (in which case 2 moments exist), 4 (in which case 3 moments exist), or higher. This suggests
that the results in Web Appendix Table 2 are consistent with an assumption of two finite moments, but might also be inconsistent
with third or fourth finite moments.

Another approach to this problem applies the method of moments to the same group-subgroup structure. This approach requires
that we strengthen the null hypothesis to existence of the first four moments. To explain these ideas requires additional notation. For
simplicity, we now write Xr for a replication of a given estimator. We have iid draws X1, X2, . . . , XR, with E[Xr] = µ0, V[Xr] = σ2

0 ,

E[(Xr − µ0)3] = γ̃0 and E[(Xr − µ0)4] = δ̃0, where the null hypothesis is that |µ0| <∞, σ2
0 <∞, |γ̃0| <∞, and δ̃0 <∞. As before,

we organize these replications as Xijk with groups k, subgroups j within groups, and replications i within subgroups. Recall that

by construction each subgroup j is comprised of k replications (see above for discussion). The sample means Xjk = 1
k

∑
iXijk have

centered moments E[(Xjk − µ0)] = 0, E[(Xjk − µ0)2] = σ2
0/k, E[(Xjk − µ0)3] ≡ γ0, and E[(Xjk − µ0)4] ≡ δ0, where |γ0| < ∞ and

δ0 <∞ since |γ̃0| <∞ and δ̃0 <∞. For each group k, define

Mk =
1

m

m∑
j=1

Xjk and W 2
k =

1

m

m∑
j=1

(Xjk − µ0)2 (174)

1See http://www.stata.com/support/cert/diehard/index.html.
2Since the number of replications is fixed, there is a tradeoff between the number of groups K and the number of subgroups within a group,

or m. Ideally, both m and K will be large; if m is large then we obtain a good estimate of the variance of the sample means, and if K is
large then we obtain a good estimate of the relationship between the sample variances and k−1. However, if there are m subgroups within
a group and K groups then the total number of replications required is mK(K + 1)/2. One can show that if the number of replications is
limited to R, then the largest number of groups possible, as a function of the number of subgroups m, is given by the integer portion of

0.5(−1 +
√

1 + 8 ×R/m). We set m = 128, which leads to K = 12. This allows us to use mK(K + 1)/2 = 9, 984 out of the 10,000 replications.
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and note that E[Mk] = µ0 and E[W 2
k ] = σ2

0/k. Further note that Mk and W 2
k are independent of Mk′ and W 2

k′ for k 6= k′. Next,
note that

V[Mk] =
1

m
V[Xjk] =

1

m

σ2
0

k
(175)

C[Mk,W
2
k ] =

1

m2

m∑
j=1

m∑
`=1

C[Xjk, (X`k − µ0)2] =
1

m
γ0 (176)

V[W 2
k ] =

1

m
V[(Xjk − µ0)2] =

1

m

(
δ0 −

(
σ2

0

k

)2
)

(177)

We now cast this problem into a method of moments framework. Define θ = (µ, σ2) and the moment vector

gm(θ) ≡
(
M1 − µ , W 2

1 − σ2 , M2 − µ , W 2
2 − σ2/2 , . . . , MK − µ , W 2

K − σ2/K
)′

(178)

Following Newey (1985), note that gm(θ) can be thought of as an average itself and write

gm(θ) =
1

m

m∑
j=1

g(Zj , θ) (179)

where Zj = (Xj1, Xj2, . . . , XjK) is the data for all groups. Note that this is well-behaved problem with E[g(Zj , θ)] = 0 if and only
if θ = θ0 ≡ (µ0, σ

2
0). Then define

V = E[g(Zj , θ0)g(Zj , θ0)′] (180)

noting that since the Mk sequence is independent and the W 2
k sequence is independent, this is a 2K × 2K block diagonal matrix

with 2× 2 blocks with the kth block given by [
σ2

0/k γ0

γ0 δ0 − (σ2
0/k)2

]
(181)

Next, define the 2K × 2 expected derivative matrix evaluated at θ0,

H = E
[
∂

∂θ
g(Zj , θ0)

]
= −



1 0
0 1
1 0
0 1/2
. . .

1 0
0 1/K

 (182)

Finally, for a fixed weighting matrix A, define the method of moments estimator

θ̂ = (µ̂, σ̂2) = arg min
θ
gm(θ)′ A gm(θ) (183)

This is precisely the sort of method of moments problem where there is a wisdom to avoiding the efficient choice of A (see Altonji
and Segal (1996) for background). We select A = diag{m,m, 2m, 2m, . . . ,Km,Km} because the different groups have different
numbers of replications underlying them and because this choice of A does not rely on any estimated quantities.

The specification tests we are interested in are tests of the null hypothesis that

LE[g(Zj , θ0)] = 0 (184)

where L is a matrix that focuses the test in particular directions. We focus on L = (e2, e4, . . . , e2K), where e` has a one in position
` and zeros everywhere else. This choice focuses attention on the pattern of the variance of the sample means across the groups.
The test statistic we are interested in is given by

J = m gm(θ̂)′ L′Q−mL gm(θ̂) (185)

where Q−m is a generalized inverse of the matrix Qm = LPVmP
′L′ where P ≡ I −H(H ′AH)−1H ′A and where Vm is any consistent

estimator for V . Under the null hypothesis that the first four moments are finite, J is distributed χ2 with degrees of freedom equal
to the rank of Q, where Qm has probability limit Q. This rank can be shown here to be equal to K − 1.

A particular issue in this context is the quality of the estimator Vm. Intuitively, V is related to the second, third, and fourth
moments of the individual replications Xr. To allow Vm to take advantage of these microdata estimates, we need to relate γ0 to γ̃0

and δ0 to δ̃0. To do so, note that

γ0 = E[(Xjk − µ0)3] = C[Xjk − µ0, (Xjk − µ0)2] (186)

= C[Xjk − µ0, X
2
jk]− 2µ0C[Xjk − µ0, Xjk] (187)

Then we have

C[Xjk − µ0, X
2
jk] =

1

k

k∑
i=1

C[Xijk − µ0, X
2
jk] =

1

k3

k∑
i=1

k∑
`=1

k∑
`′=1

C[Xijk − µ0, X`jkX`′jk] (188)
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When i 6= ` and i 6= `′, this covariance is zero. When i = ` = `′ the covariance is given by γ̃0 + 2µ0σ
2
0 . This occurs k times. When

i = ` but ` 6= `′ the covariance is given by σ2
0µ0. This occurs k(k − 1) times. Symmetrically, when i = `′ but ` 6= `′ the covariance

is given by σ2
0µ0. This occurs k(k − 1) times. Overall then we have

C[Xjk − µ0, X
2
jk] =

1

k3

(
k(γ0 + 2σ2

0µ0) + 2k(k − 1)σ2
0µ0

)
=

1

k2
γ̃0 +

2

k
σ2

0µ0 (189)

Turning now to the second piece,

C[Xjk − µ0, Xjk] =
1

k

k∑
i=1

C[Xijk − µ0, Xjk] =
1

k2

k∑
i=1

k∑
`=1

C[Xijk − µ0, X`jk] (190)

This covariance is zero except when i = `, when it is equal to σ2
0 . This occurs k times. Putting these results together, we have

γ0 = E[(Xjk − µ0)3] =
1

k2
γ̃0 +

2

k
σ2

0µ0 −
2

k
µ0σ

2
0 =

1

k2
γ̃0 (191)

Consider next the fourth centered moment. Note that

δ0 = E[(Xjk − µ0)4] = V[(Xjk − µ0)2] + E[(Xjk − µ0)2]2 (192)

A standard result from introductory statistics3 is that

V[(Xjk − µ0)2] =
1

k3
(δ̃0 − 3σ4

0) +
2

k2
σ4

0 (193)

and of course E[(Xjk − µ0)2] = V[Xjk] = σ2
0/k. Putting these results together, we have

δ0 = E[(Xjk − µ0)4] =
1

k3
δ̃0 + 3σ4

0
k − 1

k3
(194)

In summary, an accurate estimator for V is given by

Vm = diag

{[
σ̂2/k γ̂/k2

γ̂/k2 (1/k3)(δ̂ − 3σ̂4) + 2σ̂4/k2

]}
(195)

where σ̂2 corresponds to the estimate θ̂ and γ̂ = 1
R

∑R
r=1(Xr−X)3 and δ̂ = 1

R

∑R
r=1(Xr−X)4 are based on all available replications,

where X = 1
R

∑R
r=1 Xr. Under the null hypothesis of finite moments, the test statistic J defined in equation (185) is distributed

chi-square with K − 1 degrees of freedom for every randomized set of groups and subgroups. As before, to test the null hypothesis,
we focus on design 1, curve 1 of the Frölich DGPs and on the NSW DGP with covariates drawn from the empirical distribution.

For the estimator replications corresponding to these DGPs, we generated 10,000 group-subgroup structures, computing J for
each DGP for each estimator for each structure. We then used an undersmoothed kernel density estimator to examine departures
of the resulting distribution of J from the reference distribution of χ2

K−1. To confirm visual impressions, we also computed the
Kolmogorov statistic for each estimator. The results of this exercise are given in Web Appendix Figures 1 (Frölich) and 2 (NSW).

For most estimators, there is little evidence against the finite moments hypothesis. The Kolmogorov statistics are occasionally
statistically significant at conventional levels, but usually when this is the case the extent of the discrepancy in the densities (and
hence in the cumulative distribution functions) is very minor. The clear exception to this is the pair of results for the unnormalized
reweighting estimator. For this estimator, there is rather clear evidence against the hypothesis of finite moments, with most J values
being either quite small or quite large relative to the reference distribution. For some of the other estimators, particularly those
involving cross-validation, there is some evidence against the null hypothesis, but the results are not decisive. Finally, it is interesting
to note that the simple regression procedure did not detect any difficulties with the unnormalized reweighting estimator. One inter-
pretation of this pattern is that the first two moments exist, but that the fourth, or perhaps even the third, moment does not exist.

To investigate this further, we took six batches of 10,000 draws from Student’s t distribution, with degrees of freedom equal to
1, 2, 3, 4, 5, and 6. We then followed the same testing procedure described above. The results of this exercise are presented in
Web Appendix Figure 3. Comparing the figures in Web Appendix Figure 3 to those in Web Appendix Figures 1 and 2, it appears
as though unnormalized reweighting has finite first moment, and possibly a finite second moment, but that the estimator may not
have a finite third moment and almost surely does not have a finite fourth moment.

3See http://www.math.uah.edu/stat/sample/Variance.pdf for a particularly clear derivation.
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Web Appendix Table 1. Asymptotic Variances of Selected Estimators for TOT

Estimator Asymptotic Variance

θ̂U,tw Ωθ + 1
q2E

[
µ0(Xi)

2 p(Xi)
1−p(Xi)

]
+ 2 1

qC [τ(Xi), µ0(Xi)|Ti = 1]

θ̂U,pw Ωθ + 1
q2E

[
µ0(Xi)

2 p(Xi)
1−p(Xi)

]
+ 2 1

qC [τ(Xi), µ0(Xi)|Ti = 1]

− 1
q2E [µ0(Xi)p(Xi)Zi]

′ I−1E [µ0(Xi)p(Xi)Zi]

−2 1
q2E [p(Xi)(1− p(Xi))(τ(Xi)− θ)Zi] I−1E [µ0(Xi)p(Xi)Zi]

θ̂U,ew Ωθ

θ̂N,tw Ωθ + 1
q2E

[
(µ0(Xi)− α0)

2 p(Xi)
1−p(Xi)

]
+ 2 1

qC [τ(Xi), µ0(Xi)|Ti = 1]

θ̂N,pw Ωθ + 1
q2E

[
(µ0(Xi)− α0)

2 p(Xi)
1−p(Xi)

]
+ 2 1

qC [τ(Xi), µ0(Xi)|Ti = 1]

− 1
q2E [p(Xi)(µ0(Xi)− α0)Zi]

′ I−1E [p(Xi)(µ0(Xi)− α0)Zi]

−2 1
q2E [p(Xi)(1− p(Xi))(τ(Xi)− θ)Zi] I−1E [(µ0(Xi)− α0)p(Xi)Zi]

θ̂N,ew Ωθ

θ̂GPE,pw Ωθ + 1
q2E

[
(µ0(Xi)− α0)

2 p(Xi)
1−p(Xi)

]
+ 2 1

qC [τ(Xi), µ0(Xi)|Ti = 1]

+ 1
q2E [p(Xi)(µ0(Xi)− α0)Zi]

′
B−1CB−1E [p(Xi)(µ0(Xi)− α0)Zi]

−2 1
q2E

[
p(Xi)

1−p(Xi)
(µ0(Xi)− α0)Zi

]′
B−1CB−1E [p(Xi)(µ0(Xi)− α0)Zi]

−2 1
q2E [p(Xi)(τ(Xi)− θ)Zi]B−1E [p(Xi)(µ0(Xi)− α0)Zi]

θ̂GPE,ew Ωθ

θ̃NN Ωθ + 1
q2

1
2kE

[
σ2
0(Xi)

(
p(Xi)

1−p(Xi)
+ p(Xi)

)]
Notes: Here, I = E[p(Xi)(1− p(Xi))ZiZ

′
i], B = E[p(Xi)ZiZ

′
i], C = E[ p(Xi)

1−p(Xi)
ZiZ

′
i], q = E [p(Xi)],

q2Ωθ = E
[
σ2
1(Xi)p(Xi) + σ2

0(Xi)
p(Xi)

2

1−p(Xi)
+ (τ(Xi)− θ)2p(Xi)

]
, and k is number of neighbors.
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Web Appendix Table 2. Link Between V[X] and k−1: R2 Values

Frölich Design NSW Design
Estimator A B A B
Propensity Score Matching

Pair (k = 1) 0.991 0.993 0.992 0.992
NN (k = 4) 0.991 0.982 0.987 0.975
BCM (k = 4) 0.992 0.984 0.987 0.976
NN (CV ) 0.988 0.985 0.961 0.966
BCM (CV ) 0.999 0.998 0.995 0.990
LL (CV ) 0.982 0.988 0.976 0.973

Covariate Matching
Pair (k = 1) 0.966 0.974 0.937 0.912
NN (k = 4) 0.995 0.990 0.987 0.977
BCM (k = 4) 0.992 0.991 0.992 0.988
NN (CV ) 0.995 0.992 0.968 0.956
BCM (CV ) 0.996 0.994 0.992 0.985

Reweighting
Unnorm. 0.981 0.974 0.981 0.970
Norm. 0.993 0.992 0.991 0.987
GPE 0.990 0.985 0.983 0.978

Notes: Table gives R2 for a regression of sample variances for groups indexed by k on k−1. Columns A correspond to a
regression without a constant term and columns B correspond to a regression with a constant term. See Web Appendix
text for details.

Web Appendix Table 3. Percentiles of R2

A B
dof 5th 95th 5th 95th

1 0.008 0.653 0.000 0.693
2 0.160 0.955 0.011 0.930
3 0.779 0.992 0.606 0.987
4 0.914 0.996 0.853 0.994
5 0.946 0.997 0.913 0.995
6 0.956 0.997 0.929 0.996

Notes: Table gives 5th and 95th percentiles of R2 across 10,000 possible group-subgroup structures, for a fixed set of
10,000 draws from Student’s t distriubtion with varying degrees of freedom. Recall that Student’s t with ν degrees of
freedom has ν − 1 moments, but that the νth moment either does not exist or is infinite.
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Web Appendix Figure 1. Testing for Finite Moments:
Density Estimates for J in Design 1, Curve 1

Kolmogorov p−value = 0.664
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Web Appendix Figure 1. Testing for Finite Moments:
Density Estimates for J in Design 1, Curve 1 (cont.)
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Web Appendix Figure 1. Testing for Finite Moments:
Density Estimates for J in Design 1, Curve 1 (cont.)
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Web Appendix Figure 2. Testing for Finite Moments:
Density Estimates for J in NSW Design
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Web Appendix Figure 2. Testing for Finite Moments:
Density Estimates for J in NSW Design (cont.)
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Web Appendix Figure 2. Testing for Finite Moments:
Density Estimates for J in NSW Design (cont.)
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Web Appendix Figure 3. Testing for Finite Moments:
Density Estimates for J Based on Student’s t Distribution
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