Textual Databases

Susan Hockey

University of Alberta

Textual databases are becoming major resources for research in language and linguistics. By ‘textual database’ we mean continuous text, either written or transcribed from speech. It may be a complete text or texts, in the literary sense, or samples of text. This chapter discusses important issues in the acquisition and use of these databases. An overview of existing resources is given, followed by an examination of markup schemes and software tools. The emphasis is on tools for the ordinary working linguist and the chapter concludes with a brief assessment of what he or she can expect to achieve using these techniques.

Acquiring and Creating Electronic Texts

Acquiring or creating an electronic text is of course the first stage of a project. Unfortunately there is as yet no single source which identifies all or even most existing texts. Until very recently almost all electronic texts were created either by individuals for their own specific research projects (for example, study of style of an author or comparison of vocabulary in specific genres) or by research institutes such as the Istituto Linguistica Computazionale Pisa or the Institut National de la Langue Française, which were established for large scale studies of their own language. At the time of writing it is estimated that about 25% of texts are in the hands of individuals and about 70% in research institutes. It is not known how many of these texts are available for other scholars to use, but very few of them were created originally for multi-purpose use by different scholars. The remaining 5% form the growing number of texts which libraries are beginning to acquire and make available for general use.

Sources of Texts

Here we can only note some long-standing sources of electronic text which can claim some reliability. The Web sites listed in the Appendix provide an obvious starting point for further exploration.

The Oxford Text Archive (OTA) at Oxford University Computing Services has a collection of more than 1000 texts in some 30 different languages, which it makes available to researchers at low cost. The OTA was established in 1976 to provide long-term storage for electronic texts which are of interest in literary and linguistic scholarship. It accepts any text which is offered and undertakes to ensure that the electronic copy is not lost. The texts are in many different formats, and the level of accuracy and encoding varies greatly. The OTA includes several corpora and collections of text which are of interest to linguists as well as electronic dictionaries and thesauri. Some OTA texts are available for widespread distribution; others need the permission of the original compiler before copies can be made. The OTA catalog also includes a number of texts which have been purchased for use by Oxford University and cannot be distributed further. It also gives a note of the source or depositor of the text and an indication of its size.

	The Humanities Computing Yearbook, published by Oxford University Press, is a compendium of information about humanities computing, containing extensive bibliography and information about software and text resources. Volume 1, edited by Ian Lancashire and Willard McCarty, appeared in late 1989. Volume 2 edited by Lancashire alone, appeared in mid-1991 and contains much new material as well as updating significant Volume 1 entries. The editors have done their best to verify that the information is comprehensive and reliable, certainly at the time of publication. The major focus is on the humanities, and some areas of linguistics are not covered.

The Georgetown Catalog of Projects in Electronic Text is a database of information on electronic text projects throughout the world. It compiled well over 300 entries during 1989-92 concentrating on machine-readable versions of primary text. It is a useful compilation of organizations and institutions that are working on electronic text files, but it does not give much information about the availability of the texts and does not list very many individual texts.

More recent information can be obtained from various electronic discussion lists and newsletters. This information may or may not have been verified. In particular, it has become common practice to announce new projects on discussion lists before those projects have achieved very much, and in some instances before they have begun. It is therefore advisable to check whether a project which has been announced electronically is in fact more than what has come to be called “vaporware.”

Besides The LINGUIST List <linguist@linguistlist.org>, useful discussion lists are

humanist@lists.princeton.edu

and

corpora@hd.uib.no. The Humanist list began in 1987 as a forum for humanities computing specialists. Under the editorship of Willard McCarty it has become a major international forum for discussion of intellectual, scholarly, pedagogical, and social issues, as well as for exchange of information, including the availability of electronic texts. The Corpora list is moderated by the Norwegian Computing Centre for the Humanities and also has many queries about the availability of corpora.

Institutions which hold electronic text are too numerous to mention here, but a few are worthy of note. Many have substantial collections of text in one natural language which, although not initially created for this purpose, can be used as a basis for linguistic research. The International Computer Archive of Modern and Medieval English, administered at the Norwegian Computing Centre for the Humanities, collects and distributes information on English language material available for computer processing and on linguistic research completed or in progress on the material. The whole of Ancient Greek literature up to 600AD is available on CDROM from the Thesaurus Linguae Graecae and a companion CDROM of Classical Latin is distributed by the Packard Humanities Institute. Also available for individual use are the complete corpus of Old English, which forms the basis of the material for the Old English Dictionary being compiled in Toronto, several versions of the Bible in Hebrew, Greek and other languages, and a miscellaneous collection of mostly modern American newspapers and technical documents assembled by the Association for Computational Linguistics (ACL). In summer 1994 the European Corpus Initiative (ECI) released its first CDROM, which has a collection of corpora (texts, word lists and dictionaries) in twenty-five languages including some multilingual parallel texts. The Linguistic Data Consortium (LDC) at the University of Pennsylvania has been funded by ARPA to collect and disseminate large amounts of language data for research in natural language analysis, speech processing and other language technology applications. There is a subscription fee for membership but some texts can also be purchased by non-members.

The Brown and LOB (Lancaster-Oslo-Bergen) Corpora are the two most widely known and used language corpora, and various other corpus-building projects have been modeled on them. Each contains one million words first published in 1961. The Brown Corpus is American English and the LOB Corpus is British English. Each consists of 500 samples of approximately 2000 words taken from a variety of genres. Samples from the newspaper and humor sections of the Brown Corpus have been used for the concordance examples in this chapter (see Section 3). The British National Corpus (BNC), a much larger enterprise consisting of 100 million words of British English, was completed in 1994. About 10% of the material is transcriptions of conversations. The compilation and usage of these corpora and others have led to discussions and some empirical research on what constitutes a representative corpus.

 In general, compiling information about electronic texts is not an easy task. Apart from a few well-known collections and corpora, information is scarce and is in many different formats. Compilers who created electronic texts for their own specific projects often embedded information about the texts in their own purpose-built software. Others developed their own ad hoc procedures for documenting the texts, resulting in different methodologies which are not easy to merge. Recent experiments using the rigor of bibliographic records to catalogue electronic texts have shown that these provide very well for some details that users of electronic texts need to know, but not well for markup and other information needed by processing programs. The TEI header (see Section 2.1) was developed as a solution to these problems.

Raw Text or Package?

A very large majority of existing electronic texts, and all those created newly by scholars, are what is called here plain ASCII text; that is, they are sequential files which can be displayed or printed by, for example, the DOS command type, or the Unix command cat. Software to use these texts must be acquired from another party or written by the user. Most of the texts which are becoming available on CD-ROM are accompanied by searching software and are not accessible in any other way. The user is constrained to the facilities which the developer of the software has chosen to include.

Nevertheless some of these resources provide a simple introduction to what computers can do for the linguist. The ICAME CD-ROM contains the texts of some of the ICAME corpora together with two retrieval programs, TACT and WordCruncher, both of which are widely used in the humanities. The CETEDOC CD-ROM, which contains major works of the early Christian Fathers, must be used via its own software interface, and other software interfaces come with the CD-ROMs of the New Oxford English Dictionary and the Global Jewish Database (Responsa material). The TLG, PHI, ACL and ECI CDROMS do not come with any software and the texts are not indexed in any way. The user thus has complete flexibility in potential application functions on these CD-ROMs, but also needs to write or acquire software to use them.

At the time of writing there are only two large well-known collections of humanities-related material generally accessible by on-line searches over the Internet. ARTFL (American Research on the Treasury of the French Language) is based at the University of Chicago. It contains over 2000 texts of French language and literary material mostly from the eighteenth, nineteenth and twentieth centuries, with a smaller group of seventeenth-century texts as well as some medieval and Renaissance texts. Genres include novels, verse, journalism, essays, correspondence and treatises. The Dartmouth Dante Project contains the Divine Comedy and over sixty commentaries in Latin, Italian and English and is accessible free of charge over the Internet from Dartmouth College Library. In late 1996 Chadwyck-Healey began an on-line subscription service Lion (Literature Online) for their full-text English literature databases, where the focus appears to be on looking up words for reference.

Copyright Issues

Finding out about electronic texts is not easy for other reasons. Copyright issues are a cause for concern in many quarters. When electronic versions of printed texts first began to be created over forty years ago, the full implications were not known. Many scholars created electronic versions of texts without getting appropriate copyright permissions, either because they did not know how or where to ask, or because publishers did not know how to answer. The copyright permission of many existing texts is unclear and, with the advent of networking, is further compounded by different laws in different countries. Neither do we have a clear definition of what constitutes a new edition of an electronic text, since it is so easy to make changes on a continuing basis. Whether or not the present copyright laws are adequate to deal with all possible situations that may arise in the use of this new medium is not clear, but those who have most to gain by protecting copyrights tend to be those who distribute text in a fixed form, only accessible via software provided with the text. While this makes a medium which is easier for publishers and librarians to handle, it does not provide as well for the innovative ideas and uses which electronic texts can stimulate. Other researchers have sought to avoid getting embroiled in copyright issues and deliberately chosen to work with texts which are out of copyright, but which may not necessarily be the best data from a scholarly perspective. Given the rate of technological change, it seems unlikely that a general-purpose solution to the copyright issue will be found in the near future.

Optical Character Recognition and Scanning

If no suitable text is available from any of these sources, the prospective user must then create his or her own electronic version. By the beginning of the 1980’s optical character recognition (OCR) was possible for some texts. This permits a conversion of a text to electronic form without the need for keyboarding. The most usual OCR configuration now consists of a flatbed scanner attached to a PC or Macintosh, which has software to convert the scanner’s bit-mapped image into ASCII text. Some have output options to convert the text into a format used by common wordprocessing programs.

Texts which are of interest to the linguist are likely to be suitable only for the more sophisticated scanners, most notably those which can be trained to read a specific character set. Handwriting and old printed books, where the baseline is uneven, are not usually suitable; neither are texts which contain a lot of italic or bold face material. These latter include dictionaries, which have many type face changes. The poor quality of the paper and uneven inking makes newspapers difficult, but magazines can be much better. Some scanners are able to read non-standard characters, but any script where the letters are joined together is almost certainly not possible. There may also be difficulties with accented characters, particularly those which are not very common.

The best way to determine whether a text is suitable for scanning is to try it out, being aware first that a scanner will rarely produce an entirely accurate text. Variations in the ink or paper can lead to misreads such as the confusion of c and e, or h and b, even in what appears to be a clearly printed original. Some scanning software includes a dictionary to confirm doubtful readings, but this will not be of any use if the text is in an uncommon language. An advertised accuracy rate of 99.9% means approximately one character error every ten lines, so it is necessary to proofread scanned text carefully for errors. Often a pattern can be detected in errors and some special software or macros can be written to correct a good percentage of them.

Optical character recognition sees only the typographic features on the page, and additional information is needed to create a usable text. Encoding needs to be added to identify such features as author, title, page number, and speaker, or whatever are the �appropriate units of division within the document. It may be possible to provide automatic conversion of some of these from a scanned document, but some manual editing is very often necessary, since these structural divisions do not always map automatically on to typographic features, which are all the scanner can see. (For a detailed discussion of text encoding and markup see Section 2.)

The choice between scanning and keyboarding depends very much on the nature of the text, on the circumstances of the scholar, and the resources available. However, it is essential to remember that the scanning on its own is not sufficient to produce an accurate text and may take only perhaps a quarter of the time that is needed to create a usable text. Proofreading and adding markup to make the text useful for computer processing are much more time-consuming. In general, scanning rarely turns out to be as successful as many people expect, and it is worth knowing that most large text database entry projects such as the Thesaurus Linguae Graecae and the New Oxford English Dictionary have found it more convenient to have data keyboarded professionally. A much better accuracy rate can be achieved and structural encoding can be inserted at the same time.

The term “scanning” is often used now for the creation of digitized images, where a picture of the page, not a transcription of the text itself, is stored in the computer. While this provides an effective means of delivering text for reading, the text itself in such an image cannot be processed in any way

 by the computer. The potential of image delivery of texts is strongest in the library environment, particularly for providing wider access to fragile manuscripts, but also to reduce duplicate purchases of the same material. In the longer term both image and text representation together will begin to show the real �potential of the electronic library. In the meantime, linguists will find texts rather than digitized images to be more useful for their research.

Typesetting Tapes

Typesetting tapes have sometimes been used as a source of electronic text. These are more appropriate when a substantial amount of text will be received from the same source, possibly on a continuing basis. Typesetting tapes often contain an idiosyncratic markup scheme which is typographic and needs substantial effort to decode. Corrections at proof stage are often typeset separately and not inserted into the main text so that the original tape is not a completely faithful rendering of the printed version. Publishers also find it cheaper in many instances to throw away their typesetting tapes and disks rather than incur costs in keeping them. As more publishers move to more standard markup formats these problems will diminish, but it is as well to be aware of them at this point. Using a typesetting tape seems most feasible if a standard encoding scheme is employed.

Markup Schemes

Electronic texts become much more useful when additional information called “markup” or “encoding” is inserted into the text. Markup makes explicit for computer processing those features which are implicit for the human reader of a text. In the case of wordprocessing and text formatting, markup serves to identify words to be printed in italic or bold, or to make a new page and center a heading. For text analysis applications, markup can serve two major purposes. One is to identify specific areas of text to be analyzed. The other is to locate words which have been retrieved from the text. For �example, if a corpus is divided into subsections denoting different genres, words which are retrieved can be identified by their genres, thus showing their pattern of usage among genres. The types of analyses that can be performed on a text without markup are somewhat limited. Markup can be used to encode many different features within a text. In general the more markup there is in a text, the more useful that text can be, and the more expensive it is to create.

	Markup can be used to encode both structural and analytic features. Structural features may include paragraphs, lists, headings, lines (of verse), stage directions (in drama), quotations, parts, sections, chapters and bibliographic citations. Almost anything can be included as analytic information, but most effort so far has been directed to finding ways of representing linguistic analyses of various kinds. Very many markup schemes have evolved over the last forty or so years, most of which are incompatible with one another. Some have been created for use with specific programs or as part of larger ongoing research projects. Others have been ad hoc in nature and created by individual scholars for their own purposes, and reflect only the needs of one project. Electronic texts which were created some time ago often have fairly limited markup and some have only upper case letters.

Figure 1, the beginning of Section A of the Brown Corpus, shows one method of inserting locators. Each line begins with a fixed field identifier. A01 indicates that this is Section A1 of the Corpus; Section A2 begins with A02, and so on. The number in character positions 5 to 8 on each record is a line number. The numbers go up in tens so that additional lines can be inserted, as for example 0011, 0012 without having to �renumber all the lines. Thus the first 8 character positions are an identifier for each line of text and can be used to give a reference locator for each word within the line. In this example note also Jr written Jr& in line 10. Throughout the corpus the ampersand is used to mark an abbreviation in order to distinguish the full stop in an abbreviation from that at the end of a sentence. In line 21, #MERGER PROPOSED# is obviously a headline or subheading within the article.

Figure � AUTONUMLGL � about here

Placing locators at the beginning of every line as in Figure 1 is repetitive and wasteful of space. It might only be necessary to insert a section number at the beginning of each new section. This can be done using the so-called COCOA method of encoding text. COCOA was first used widely by a concordance program of that name, developed at the Atlas Computer Laboratory in England in the 1960’s. Figure 2 shows the beginning of Shakespeare’s The Merchant of Venice encoded according to this scheme. The items within < and > serve as locators within the text. <T Merchant of Venice> indicates that the title is Merchant of Venice. <A 1> means Act 1 and <S 1> means Scene 1. Within the COCOA scheme a different letter category is used to denote each type of reference. Here C is used for speaker within the play, as S has already been used for scene. A C locator has been inserted in the text every time the speaker changes. The scope or value of a locator thus holds true until the next instance of the same locator. If the word caught in the third line of Antonio’s speech here was retrieved it would have the locators T Merchant of Venice, A 1, S 1 and C Antonio. The actual letters used for each category are �chosen by the encoder of the text and they are case sensitive, thus allowing up to 52 different categories.

Figure � AUTONUMLGL � about here

The COCOA scheme assumes that whatever program is processing the text can keep track of line numbers automatically. Non-sequential numbers can be handled by inserting an explicit line number reference within the text. In Figure 2, stage directions are enclosed within double round brackets. This allows a program to ignore these if desired, so that occurrences of enter, exit etc within the stage directions are not included within counts of these words throughout the text. A linguist may want to use this mechanism for notes about the source of the text, or for comments on speakers if the text is a transcription of a conversation.

Many existing texts use either the COCOA encoding scheme or the method of locators shown in the Brown Corpus examples, but experience has highlighted problems. One syntax is used for encoding locators. Another is used for other kinds of information. It is sometimes not clear which is best for information such as foreign language words. The locator method can be used for substantial amounts of text in a different language. For example, using F for foreign language,

<F French>

lines of text in French

<F English>

lines of text in English

�but single words or very short sections of text might better be treated in the same way as the stage directions as follows

John exhibited a certain ((joie de vivre)).

or by adding specific markers at the beginning of each word, for example:

John exhibited a certain $joie $de $vivre.

where a search for all words beginning with $ retrieves the French words, a method which has been widely used. The same text may often contain different markers with different functions. Regrettably, documentation explaining what the markers indicate is less often provided.

SGML and the Text Encoding Initiative (TEI)

Two encoding schemes (with variants of them) have been illustrated above but many others exist. By 1987, as scholars interchanged texts more and more, it became clear that this plethora of encoding schemes was hampering progress. It was also recognized that most existing schemes were deficient in one way or another. Some were designed for one software program and were thus machine-specific. Others reflected only the views of their originators and could not readily be applied to other projects. Almost all were very poorly documented and none was rich enough to cope with the variety of applications and purposes for which an electronic text might be created. At the end of 1987, a major international project, called the Text Encoding Initiative (TEI), began under the sponsorship of the Association for Computers and the Humanities, the Association for Computational Linguistics and the Association for Literary and Linguistic Computing. It produced its Guidelines for Electronic Text Encoding and Interchange in May 1994. The �TEI Guidelines, as they are usually called, are the result of six years of work by volunteers in over twenty countries, coordinated and written up by two editors. The Guidelines consist of almost 1300 pages of specifications of encoding tags for many different discipline areas and provide a much sounder basis for encoding electronic texts.

The Guidelines use the Standard Generalized Markup Language (SGML) which became an international standard in 1986. SGML is a metalanguage for defining markup schemes. It is built on the assumption that a text can be broken down into objects (paragraphs, lists, names, chapters, titles, etc) which can nest within each other. The principle of SGML is “descriptive,” rather than “prescriptive.” The encoder indicates what a textual object is, rather than what the computer is supposed to do with that object. This means that different application programs can operate on the same text. For example, if titles embedded in the text are encoded as such, a retrieval program can search all the titles, an indexing program can index them, and a printing program can print them in italic, all without making any changes to the text.

The creator of an SGML application, as it is called, defines those features of a text which may need to be encoded as objects and gives specific element names to them. All the elements which may occur in a text are defined in an SGML Document Type Declaration (DTD) which also specifies the relationship between them. This means that a computer program can use the DTD to validate the encoding in a text. For example, an error is detected if the DTD specifies that the text must have at least one title element, but no title element is given. Non-standard characters are denoted by entity references in SGML, for example, — for an emdash or é for é as in état for état. �This mechanism can also be used for boilerplate text, but is hardly feasible for large sections of text where other methods of defining writing systems are needed.

The SGML element names are embedded in the text in the form of encoding tags. Each element has a start and an end tag, although in many cases it is possible to omit the end tag. Elements can also have attributes which modify them in some way. Figure 3 shows the beginning of Walter Pater, The Child in the House, encoded in TEI-conformant SGML. This example was prepared by Wendell Piez as one of the TEI pilot projects produced at the Center for Electronic Texts in the Humanities in 1995-6. It begins with the front matter consisting of the title and a publication note. Only the first paragraph of the body of the text is shown. The paragraph tag <p> has an identifier attribute giving the chapter and paragraph number. In the <date> element an attribute gives a date value more suitable for computer processing than “Aug. 1878" which would be treated as two words “Aug.” and “1878.”

Figure � AUTONUMLGL � about here

The TEI has attempted to define a comprehensive list of over 400 features which linguists and humanities scholars might want to use. The Guidelines describe each of these features and give examples of their use. However, since no list can be truly comprehensive, the Guidelines provide for extension and modification when needed. Very few tags are absolutely required. It is up to the encoder of a text to determine what he or she wishes to tag. The encoding process is seen as incremental, so another researcher may take that text and add encoding for a different set of features. SGML provides for �different and possibly conflicting views to be embedded in the same text and a researcher who works on that text may choose to ignore some of the encoding.

HTML is also an SGML application, but it consists only of elements intended to be interpreted by Web browsers for display. They are not suitable as locators in a retrieval system.

The TEI Guidelines are built on the principle that all texts share some common core of features, to which may be added tags for specific disciplines or theoretical orientations. The common core consists of a header, which provides a bibliographic and encoding description of the text, and some sixty elements such as title, list, name, date, abbreviation, quotation, note and the like. Because of the very wide variety of structural divisions possible in the texts which the TEI is addressing, a general purpose structural element <div> is used with an attribute for the type of division (chapter, part, volume, stanza, book, quatrain etc). Together, the header, core and structural tags form a base tag set. Specialized base tag sets exist for verse, drama, transcriptions of speech, dictionaries and terminological data. The base may be supplemented by any of the following additional tag sets: linking, segmentation and alignment, simple analytic mechanisms, feature structures, certainty and responsibility, transcription of primary sources, critical apparatus, names and dates, graphs, networks and trees, tables, formulae and graphics, and language corpora. The construction of a TEI DTD has thus been likened to the preparation of a pizza where the base and then the toppings (in the form of additional tag sets) are chosen.

SGML is used for many different applications and the market for SGML software is growing, although much is still expensive for the academic user. Putting the tags into the �text can be aided by SGML-aware programs like Author/Editor or the latest versions of WordPerfect which ensure that the document is valid as it is being tagged. Of the SGML-aware retrieval programs or browsers, only SoftQuad’s Panorama is within the financial reach of the individual researcher. The Opentext search engine is used by many libraries which provide network access to SGML-encoded electronic texts. Electronic Book Technologies' Dynatext and SoftQuad's Explorer provide more of a browsing capability with hypertext linking. For those who have access to it, the SARA program written to search the British National Corpus is a good example of what can be done with an SGML-aware retrieval program.

More tools exist for those who are comfortable with UNIX. These include a public domain parser sgmls and some corpus handling routines. (See the next chapter.)

It is expected that more SGML software will become available and that some will be specific to the TEI DTDs. Researchers who are beginning a project should not consider the current lack of cheap software as a reason for choosing not to use the TEI and SGML. Experience has shown that the TEI remedies almost all the defects in pre-TEI encoding schemes. It addresses the scholarly needs in much greater depth and can be treated as an archival format of the text from which other formats can be derived. However, since we do not yet have any general-purpose SGML-aware desktop text analysis software, the examples in the next section were created with the Oxford Concordance Program (OCP), which predates the TEI. In most cases it is easy to convert an SGML-encoded text to the format required by OCP and similar programs.

�Basic Analyses

The computer’s basic functions of counting, searching and sorting (alphabetizing) have been applied to textual data ever since 1949 when Father Busa began the first humanities computing project, his concordance to the works of St Thomas Aquinas and related authors. These functions are used to create concordances and word lists which serve as the underlying tools for many linguistic computing projects. Packaged concordance programs are especially suited for the ordinary working linguist who does not have large-scale computing facilities and assistance. When applied judiciously they can be used for many different purposes in both research and teaching.

Word Lists and Concordances

A word list is a list of words where each word is accompanied by a number indicating how many times that word occurs. In an index, each word is accompanied by a list of references indicating where that word occurs in the text. A word list in alphabetical order is shown in Figure 4. This example uses Section A of the Brown Corpus, a sample of newspapers. As in almost all other examples, only a portion of the results is illustrated. The words are given in alphabetical order, beginning with the word a which occurs 2122 times, out of a total of 88912 words in this text. In this version of the Brown Corpus ‘~’ and ‘&’ represent abbreviations. Because of the way that words were defined when this list was created, ~A, A&, A&A&U& and A&A&U&'s appear at the top. Note that a occurs many more times than the other high frequency words shown here, e.g. about. The hyphen at the end of abstaining- has also appeared because in this case it represents an em-rule which appears without a space before it in the text. A word list like this shows up �misspellings very quickly as can be seen with the entry accomodations. It also immediately shows that the words are individual forms. The verb achieve appears in three different forms and the noun achievement in two. Note also Achaeans and Achaeans’ as two separate entries.

Figure � AUTONUMLGL � about here

The words in the same text can also be sorted into frequency order as in Figure 5 where the most frequent word appears first. The word the is easily the top with over twice as many occurrences as the next word of. There is also a big gap between the top six words the, of, and, to, a and in and the next word for. Figure 6 shows part of a concordance of the word I in the humor section (R) of the Brown Corpus. Here each occurrence is identified by a reference consisting of the sample number and line number within the sample.

Figure � AUTONUMLGL � about here

Figure � AUTONUMLGL � about here

Defining Words

As we look at some other examples, the first question to consider is what constitutes a word. Some software packages include a built-in definition of a word. This is usually something surrounded by spaces, which is also almost always inadequate. The “words” in the Brown Corpus are relatively straightforward, but, as we saw in Figure 4, they include �hyphens and apostrophes as well as numerals, percent and dollar signs, as well as additional symbols like the & for an abbreviation in Mr& and A&. The user needs to decide whether these are in fact parts of words, and if so how they will be treated in the alphabetization process.

Non-alphabetic characters which have more than one meaning include

� AUTONUM-lst �period (full stop), indicating the end of a sentence, an abbreviation, or a decimal point

apostrophe surrounding a quotation or direct speech, indicating the genitive or appearing in forms like don’t and can’t

hyphen, indicating a compound word or a typographic feature when a word is broken at the end of a line, or used as an em-rule

If a text is being keyboarded some of these problematic characters can be encoded at this stage. For example typographic hyphens can be eliminated and the entire word reconstituted, or periods which are abbreviations can be encoded as a different character.

At the simplest level, the text or other linguistic data is seen as a sequence of characters, most often corresponding directly to those characters on the keyboard or screen. These characters are almost always stored as 8-bit bytes giving, for example, a possible total of 256 characters, of which only 96 are easily accessible directly from the keyboard. These characters form a specific order within the computer, often called the internal collating sequence. In it upper and lower case letters appear different so that for example upper case A is different from lower case a. This fixed order is used by some �software packages for sorting words, but even if upper and lower case letters can be made equivalent, it is inadequate to handle all but the simplest of texts.

In most applications for humanities research and teaching, much more flexibility is needed in the definition of an orthographic word. The user needs to be able to define the make-up of a word and the alphabetical sequence used for sorting words. OCP permits up to eight keyboard characters to represent one letter. This means that ch, ll and rr in Spanish can be sorted as separate letters. In fact OCP has four major types of letters which are described below.

Alphabet: primary sorting

“Alphabet” letters make up the primary sorting key for alphabetizing words. They are defined in the order in which they are to be sorted with the possibility of declaring letters to be equal for sorting purposes, as is normally needed for upper and lower case letters. Figure 7 shows a word list of a short Spanish poem, where chapotean comes after cuatro and llega after Los. It would be just as possible to define an alphabet where z is first and a is last, causing all beginning with z to appear first, followed by all beginning with y, x, w etc. The numerals 0 1 2 3 4 5 6 7 8 9 are best treated as part of the alphabet since they occur frequently enough as numbers, dates, currency symbols and weights and measures, all of which look like “words.”

Figure � AUTONUMLGL � about here

�This mechanism for sorting words is adequate for most languages which use the Roman alphabet, but it is unable to place, for example, Old English thorn in the alphabetical position of th, that is in the middle of the ts. Neither can it easily handle Welsh and other languages which exhibit mutation. It is possible to define the correct alphabetical order for Greek, Hebrew, Russian or other languages which do not use the Roman alphabet. In this case the display of a character on the screen or the printing of it must be treated as separate operations, independent of the functions of another application program.

Various utilities exist for screen display or printing of non-standard characters. In choosing suitable software, it is all too easy to be seduced by the ability to display or print certain characters, rather than to examine the functionality of the software to determine whether it is capable of performing the desired analyses.

Diacritics: secondary sorting

Some letters are better treated as diacritics, that is, as a secondary sorting key for alphabetizing words. Hyphen and apostrophe are good examples in English. If the words can’t and cant and I’ll and ill occur, one might expect all the instances of can’t to come immediately after all those of cant and all those of I'll immediately after all those of ill. These results cannot be achieved by placing the apostrophe anywhere in the alphabet. Figure 8 shows an example of ill and I’ll followed by other entries beginning ill-. Note also that the & used for abbreviations is also treated this way as is shown in Ill& for Illinois.

Figure � AUTONUMLGL � about here

	Accented characters are usually best treated in this way. Many existing electronic texts were created when only the 96 or so characters accessible directly from the keyboard were available. A common way of representing an acute or grave accent was to use / or \ immediately after the letter to which it belongs. For example élève would appear as e/le\ve. Other characters might be chosen for circumflex, cedilla etc. Defining / and \ to be diacritics causes words which include these accented letters to appear in the alphabetical order in which they are normally found in a dictionary. For example élève would appear as a separate entry from élevé. OCP also provides a means for correctly sorting the accented characters on the PC’s character set.

Padding: non-sorting letters

“Padding” letters have no effect on the way a word is sorted. Words containing them are sorted together with the same sequence of letters without them. Figure 9 shows the effect of this on ill and I’ll which is now only one headword. If & was also defined as a padding letter, Ill& would also appear as the same headword as ill. Note also the effect on its where it’s appears in entry A03 031.

Figure � AUTONUMLGL � about here

Punctuation: word separators

Punctuation or word separators normally include all the regular punctuation characters, plus any other additional symbols which separate words, including space. Although in �most situations it is better to treat a hyphen in English as a diacritic, Figure 10 shows what happens when it is defined as a word separator. The entries for long include long-term, long-time, long-life, and long-bodied. These entries would also appear under term, time, life, and bodied.

Figure � AUTONUMLGL � about here

Using the letter definitions

A “word” can then be defined as something which consists of a combination of letters of alphabet, diacritic and, possibly, padding status. Punctuation letters separate words. The word is most often the basic search unit, and, with a little ingenuity, the letter definitions can be manipulated to search for words when they occur only under certain conditions. For example, if the normal end-of-sentence punctuation is given alphabet status, it is possible to look for words only when they occur at the ends of sentences by including the punctuation as part of the word.

Sorting Words

Words can be sorted by their endings, a process normally called reverse alphabetical. This is illustrated in Figure 11, part of an index of words ending in ed. Note that glanced comes before financed since, working backwards from the end of the word, the first letter that is different is l in glanced and n in financed. Denounced, announced and pronounced are all close together. See the next chapter for more on reverse alphabetization.

Figure � AUTONUMLGL � about here

�	As we have already seen, words can also be sorted by their frequency, starting with the most frequent word, or least frequent, or even by their length where the longest or the shortest word comes first.

Selecting Words

The concordance may include every word or only selected words. Words can be selected in several ways. Wild card characters denoting any number of letters including none, or any single letter can be specified. It is also possible to look for words occurring a certain number of times, or for sequences of words (phrases) possibly also containing wild card characters.

Here are some simple examples:

*ing	all words ending in ing.

*as *as 	all places where there are two consecutive words which end in as

in * of	all places where the word in is followed by of with one word intervening

Figure 12 shows the result of a search for all words ending in ing. As can be seen, it can be used in a fairly crude way to find all present participles. Although some unwanted words such as anything also appear, they can be deleted or ignored when the results are being studied. In many cases for the ordinary working linguist, this simple approach can be much more productive than attempting to use morphological or syntactic analysis programs, which are never completely accurate.

Figure � AUTONUMLGL � about here

Figure 13 shows the results of a search for in * of where the three words together form a special kind of headword.

Figure � AUTONUMLGL � about here

Sorting Contexts

Normally all the occurrences of a specific headword in a concordance appear in the order in which they occur in the text, but it may also be interesting to look for patterns before or after these occurrences. In a right-sorted concordance the entries for each headword are given according to the alphabetical order of what comes after the headword. This has the effect of bringing together all the places where the headword introduces or forms part of the same phrase. Figure 14 shows a right-sorted concordance of the occurrences of that in Section R of the Brown Corpus. An examination of the references (R02 101, R06 151, R06 089 etc.) shows that these entries are not in the order in which they occur in the text. They begin with all the places where that is followed by the. We see three occurrences of that the girls and three of that there was. The entries can also be given according to what comes to the left of the headword. In Figure 15 we can see all the places where, for example said that, say that, so that etc. occur. In either case the user can choose whether punctuation should be examined as the concordance entries are sorted.

Figure � AUTONUMLGL � about here

Figure � AUTONUMLGL � about here

�

Word Frequency Distributions

Besides the simple word frequency lists, OCP and other programs can produce more sophisticated distributions. A frequency profile, as shown in Figure 16, shows the number of words which occur once, twice, three times etc. up to the most frequent word. Cumulative and percentage totals are also given. The type/token ratio is a measure of the spread or richness of the vocabulary. Types are different words, and tokens are instances of each type. For example, if the word “and” occurs 100 times in a text, it is 1 type and 100 tokens. It will be seen that the type/token ratio yields a number between 0 and 1. The closer it is to 1, the richer the vocabulary. The type/token ratio can be used for comparisons between texts, but is dependent on the length of the texts and is therefore only effective when the texts are approximately the same length.

Figure � AUTONUMLGL � about here

Concordances and interactive retrieval

Interactive retrieval programs provide some of the same facilities, but they work by querying an index which has previously been built by a special ancillary program. The retrieval of words is much faster, especially when the text is large. However, for this approach the word definitions must be made when the index is built, and cannot be redefined for each query. This can mean less flexibility overall. Some interactive retrieval programs do not allow a search on word endings, for example for *ing. If they do allow it, �they may take a long time because there is no reverse index to search and so they must do a sequential search on the word list. For the individual scholar, TACT is the probably the most widely-used text retrieval program.

Limitations

It is important to understand these two limitations:

(1)	Homographs (words which are spelled the same but have different meanings) are not separated. In a word list or index, only the headword is given and there is no way to determine whether several meanings are present for a homographic word. It is only when the contexts given in a concordance are inspected that the different meanings of (for example) lead as a verb “to lead” and two meanings of the noun lead (as “leash” and “a metal”) can be seen. These need to be separated manually if further analyses of word counts are to be performed. Some concordances omit common words, but this can also lead to problems with homographs, for example will as an auxiliary verb, as well as two meanings of the noun: wish and testament.

(2) 	Lemmatization, that is, bringing together different forms of the same lemma, is not normally carried out. Depending on the nature of the research, it may be necessary to lemmatize manually or at least not to be dependent on counts which have been performed on unlemmatized forms. In some languages most forms of the same lemma appear close together in an alphabetical list, e.g. bring, brought, bringing, brings, but for other lemmas, forms may need to be brought together from different parts of the list.

Conclusion

Much computer-aided text-based research in the humanities is carried out using the tools and techniques described in this chapter. Applications include lexical research, stylistic analysis, lexicography and almost any other task based on finding specific instances or repeated patterns of words or “pseudo-words.” It is important to be aware of the limitations outlined in Section 3.8, but it is also true that judicious use of wild card characters in specifying search terms can often yield useful results very quickly. Certain types of clauses or constructions can be identified by words which introduce them. Inflections can be studied by specifying words that end in certain sequences of characters. Punctuation or other special characters can also be used to find specific sequences of words. It is now generally accepted that common words or function words, those words which are not dependent on the content of a text, can be used in many circumstances to discriminate style and genre. Vocabulary frequencies can then be subjected to further statistical analyses. Numerical studies of style and vocabulary are not especially new, but with the advent of computers much larger quantities of texts can be analyzed, giving an overall picture that would be impractical to find by any other means.

If suitable electronic text is already available, progress in a text database project can be rapid. The linguist may find that he or she has too many results to digest easily. If the text needs to be created first, a project may not appear to produce visible results for a long time. A little experimentation with the chosen software on a small amount of text can be very encouraging to someone faced with a lot of proofreading and editing of data. Much time can be spent in reformatting data, from an OCR scanner, or for a particular program, and here it is sometimes worth investing time in learning a macro language or other tool which can speed this up rather than working through the text line by line with a wordprocessor or editor. The advice given in this chapter should help linguists determine how useful textual databases and the tools that work with them can be. Many examples now exist of successful projects and we can expect these tools to become part of the everyday working life of many linguists. With a clear understanding of the limitations, much can be accomplished with little investment of time.�Appendix

Part I. Print resources

Biber, Douglas

	1998	Variation Across Speech and Writing. Cambridge: Cambridge University Press.

[Uses computational techniques to analyse the linguistic characteristics of different spoken and written genres. A useful place to start for topics more advanced than those discussed in this paper.]

Johansson, Stig.

	1994-5	“Quo vadis? Reflections on the Use of Computer Corpora in Linguistics”, Computers and the Humanities, 28: 243-52.

		[A survey up to 1994 with special attention given to the pitfalls. Also has a good bibliography.]

Lancashire, Ian (ed.)

	1991	 The Humanities Computing Yearbook 1989-90. Oxford: Oxford University Press.

		[Compendium of bibliography, software and electronic resources for humanities computing, all verified by the editor.]

Lancashire, Ian, in collaboration with John Bradley, Willard McCarty, Michael Stairs and T.R. Wooldridge

	1996	Using TACT with Electronic Texts. New York, Modern Language Association.

		[Detailed description of the TACT programs, concentrating on their use for literature. Accompanying CDROM contains over 2500 texts.]

Literary and Linguistic Computing

	1986-	Journal of the Association for Literary and Linguistic Computing. Published by Oxford University Press.

[See especially Volume 8, Number 4 (1993) and Volume 9, Number 1 (1994) for papers from the Pisa Workshop on Corpora, 1992.]

Nijmegen Institute for Cognition and Information

	1993	Optical Character Recognition in the Historical Discipline: Proceedings of an International Workgroup. Netherlands Historical Data Archive, Nijmegen Institute for Cognition and Information.

		[Papers assessing the value of OCR for the humanities. “Historical” is interpreted broadly.]

Oxford University Computing Service

	1988	Micro-OCP Manual. Oxford: Oxford University Press.

	[1993]	rprt.

		[Author: Susan Hockey. Contains description of COCOA markup format as well as functions of OCP program.]

Sinclair, J.M.

	1991	Corpus, Concordance, Collocation. Oxford: Oxford University Press

		[Good introduction from the Editor-in-chief of Cobuild.]

Sperberg-McQueen, C.M—Burnard, Lou. (eds).

(1994).	Guidelines for the Encoding and Interchange of Electronic Texts. 2 vols. Chicago and Oxford: Association for Computers and the Humanities, Association for Computational Linguistics, Association for Literary and Linguistic Computing, 1994. Also available in various electronic formats from the TEI Web site http://www.uic.edu/orgs/tei.

[Complete specification of the TEI Encoding Guidelines. Chapter 2, “A Gentle Introduction to SGML”, is highly recommended.]

Part II. Software

MicroConcord

Concordance program for DOS developed by Mike Scott and Tim Johns. Produces various kinds of concordances and collocations. Designed specifically for intermediate and advanced students of English as a foreign language. Published by Oxford University Press. See MicroConcord and the MicroConcord Corpus Collections—Overview at http://www1.oup.co.uk/oup/elt/software/mc?.

Monoconc for Windows

		Concordance program for Windows developed by Michael Barlow. Designed for use by linguists, language teachers and students. Published by Athelstan. See http://www.nol.net/~athel/mono.html.

Oxford Concordance Program (OCP) and MicroOCP

Powerful concordance program developed at Oxford University Computing Service by Susan Hockey and Jeremy Martin. OCP runs on several mainframe platforms including Unix. MicroOCP is implemented for DOS and is available from Order Department, Oxford University Press, 2001 Evans Road, Cary, NC 27513. E-mail: orders@oup�usa.org; http://www.oup-usa.org

TACT

Text Analysis Computing Tools developed by a team at the University of Toronto. Suite of programs for interactive text analysis. Available via ftp from ftp.chass.utoronto.ca/pub/cch/tact/. See also Lancashire et al (1996).

Part III. Network resources

British National Corpus (BNC)

A 100 million word collection of samples of written and spoken language from a wide range of sources, designed to represent a wide cross�section of current British English, both spoken and written. The corpus is encoded in SGML and searchable via the SARA retrieval program. Access is restricted to within Europe. http://info.ox.ac.uk/bnc.

Catalogue of Projects in Electronic Text (CPET)

A catalogue of projects that create and analyse electronic text in the humanities, compiled at Georgetown University. It includes more than 300 projects working on primary materials such as literary works, historical documents, and linguistic data available from commercial vendors and scholarly sources. Although not been updated since early 1993, CPET is a very useful source of information. gopher://guvax.georgetown.edu

Cobuild

A department of HarperCollins Publishers, specializing in the preparation of reference works for language. Based within the School of English at the University of Birmingham, UK, Cobuild has developed a very large corpus of English known as the Bank of English. CobuildDirect, a 50�million word corpus, is available on�line as a subscription service. A free demo can be sampled. http://titania.cobuild.collins.co.uk.

Corpus Linguistics Web site

Maintained by Michael Barlow, Rice University. Contains pointers to corpora in many languages, software, courses and bibliography. A useful starting point. http://www.ruf.rice.edu/~barlow/corpus.html

European Corpus Initiative (ECI/MCI)

Founded to oversee the acquisition and preparation of a large multilingual corpus. It has produced produced Multilingual Corpus I (ECI/MCI), CDROM containing over 98 million words, covering most of the major European languages, as well as Turkish, Japanese, Russian, Chinese, Malay and more. It is available to researchers for a modest fee. http://www.elsnet.org/resources/eciCorpus.html

International Computer Archive of Modern and Medieval English (ICAME)

An international organization of linguists and information scientists working with English machine�readable texts. It has compiled an archive of English text corpora in machine�readable form, which resides at the Norwegian Computing Centre for the Humanities (NCCH) in Bergen, Norway. The ICAME CDROM contains several well-known corpora including Brown and its British English equivalent (LOB). The ICAME Web site also hold the archive of the corpora list. http://www.hd.uib.no/icame

International Corpus of English (ICE)

ICE began in 1990 with the primary aim of providing material for comparative studies of varieties of English throughout the world. A related aim is to provide resources for research into English as an international language. Each of the twenty participating countries is collecting, computerizing, and analyzing a corpus of one million words of their own national or regional variety of English, spoken or written between 1990 and 1996. http://www.ucl.ac.uk/english�usage/ice.htm

Linguistic Data Consortium (LDC)

An open consortium of universities, companies and government research laboratories. Hosted at the University of Pennsylvania, it creates, collects and distributes speech and text databases, lexicons, and other resources for research and development purposes. Includes ACL/DCI CDROM. Some of the LDC material can be purchased by non-members. http://www.ldc.upenn.edu

Oxford Text Archive (OTA)

Contains electronic versions of literary works by many major authors in Greek, Latin, English and a dozen or more other languages, including collections and corpora of unpublished materials prepared by field workers in linguistics and electronic versions of some standard reference works. The total size exceeds a gigabyte and there are over 2000 titles in its catalogue. http://info.ox.ac.uk/ota

SGML Web site

Maintained by Robin Cover of Academic Computing, Summer Institute for Linguistics, this Web site contains everything possible about SGML and its applications. There are many pointers to academic applications. http://www.sil.org/sgml/sgml.html.

Text Encoding Initiative (TEI)

Contains information about the TEI, how to obtain copies of the TEI Guidelines in print or electronic form, archives of technical discussions and pointers to projects that are using the TEI. http://www.uic.edu/orgs/tei

Tutorial: Concordances and Corpora

Catherine Ball’s excellent tutorial derived from her Corpus Linguistics course at Georgetown University. Includes examples prepared on a Macintosh computer. http://www.georgetown.edu/cball/corpora/tutorial.html

�Figures

A01 0010 The Fulton County Grand Jury said Friday an investigation

A01 0020 of Atlanta's recent primary election produced "no evidence" that

A01 0030 any irregularities took place. The jury further said in term�end

A01 0040 presentments that the City Executive Committee, which had over�all

A01 0050 charge of the election, "deserves the praise and thanks of the

A01 0060 City of Atlanta" for the manner in which the election was conducted.

A01 0070 The September�October term jury had been charged by Fulton

A01 0080 Superior Court Judge Durwood Pye to investigate reports of possible

A01 0090 "irregularities" in the hard�fought primary which was won by

A01 0100 Mayor�nominate Ivan Allen Jr&. "Only a relative handful

A01 0110 of such reports was received", the jury said, "considering the

A01 0120 widespread interest in the election, the number of voters and the size

A01 0130 of this city". The jury said it did find that many of Georgia's

A01 0140 registration and election laws "are outmoded or inadequate

A01 0150 and often ambiguous". It recommended that Fulton legislators

A01 0160 act "to have these laws studied and revised to the end of modernizing

A01 0170 and improving them". The grand jury commented on a number

A01 0180 of other topics, among them the Atlanta and Fulton County purchasing

A01 0190 departments which it said "are well operated and follow generally

A01 0200 accepted practices which inure to the best interest of both governments".

A01 0210 #MERGER PROPOSED# However, the jury said it believes "these

A01 0220 two offices should be combined to achieve greater efficiency and reduce

A01 0230 the cost of administration". The City Purchasing Department,

A01 0240 the jury said, "is lacking in experienced clerical personnel

A01 0250 as a result of city personnel policies". It urged that the city "take

A01 0260 steps to remedy" this problem. Implementation of Georgia's

A01 0270 automobile title law was also recommended by the outgoing jury.

Figure 1. The beginning of Section A of the Brown Corpus showing the fixed format locators

�<T Merchant of Venice>

<A 1>

<S 1>

((Enter Antonio, Salerio, and Solanio))

<C Antonio>

In sooth, I know not why I am so sad.

It wearies me, you say it wearies you,

But how I caught it, found it, or came by it,

What stuff 'tis made of, whereof it is born,

I am to learn;

And such a want�wit sadness makes of me

That I have much ado to know myself.

<C Salerio>

Your mind is tossing on the ocean,

There where your argosies with portly sail,

Like signiors and rich burghers on the flood,

Or as it were the pageants of the sea,

Do overpeer the petty traffickers

That curtsy to them, do them reverence,

As they fly by them with their woven wings.

<C Solanio> ((to Antonio))

Believe me, sir, had I such venture forth

The better part of my affections would

Be with my hopes abroad.

I should be still

Plucking the grass to know where sits the wind,

Peering in maps for ports and piers and roads,

And every object that might make me fear

Misfortune to my ventures out of doubt

Would make me sad.

Figure 2. The beginning of The Merchant of Venice showing COCOA-format markup

�<text id="ch">

<pb id="MS.172" ed="MS" n="172">

<front><head><title rend="Capitals">The Child in the House</title>

<note>Published in <title rend="Italic" level="J">Macmillan's Magazine</title>,

<date value="1878">Aug. 1878</date>.</note></head></front>

<body><p id="ch1.01">

As Florian Deleal walked, one hot afternoon, he overtook by the wayside a poor aged man, and, as he seemed weary with the road, helped him on with the burden which he carried, a certain distance. And as the man told his story, it chanced that he named the place, a little place in the neighbourhood of a great city, where Florian had passed his earliest years, but which he had never since seen, and, the story told, went forward on his journey comforted. And that night, like a reward for his pity, a dream of that place came to Florian, a dream which did for him the office of the finer sort of memory, bringing its object to mind with a great clearness, yet, as sometimes happens in dreams, raised a little above itself, and above ordinary retrospect. The true aspect of the place, especially of the house there in which he had lived as a child, the fashion of its doors, its hearths, its windows, the very scent upon the air of it, was with him in sleep for a season; only, with tints more musically blent on wall <pb id="MS.173" ed="MS" n="173">and floor, and some finer light and shadow running in and out along its curves and angles, and with all its little carvings daintier. He awoke with a sigh at the thought of almost thirty years which lay between him and that place, yet with a flutter of pleasure still within him at the fair light, as if it were a smile, upon it. And it happened that this accident of his dream was just the thing needed for the beginning of a certain design he then had in view, the noting, namely, of some things in the story of his spirit—in that process of brain‐building by which we are, each one of us, what we are. With the image of the place so clear and favourable upon him, he fell to thinking of himself therein, and how his thoughts had grown up to him. In that half‐spiritualised house he could watch the better, over again, the gradual expansion of the soul which had come to be there—of which indeed, through the law which makes the material objects about them so large an element in children's lives, it had actually become a part; inward and outward being woven through and through each other into one inextricable texture—half, tint and trace and accident of homely colour and form, from the wood and the bricks; half, mere soul‐stuff, floated thither from who knows how far. In the house and garden of his dream he saw a child moving, and could divide the main streams at least of the winds that had played on <pb id="MS.174" ed="MS" n="174">him, and study so the first stage in that mental journey.</p>

Figure 3. Part of Walter Pater, The Child in the House, encoded in TEI SGML by Wendell Piez

� a 2122 absent 2 accommodated 1

 ~A 2 absolute 1 accommodations 2

 a& 39 absolutely 1 accomodations 1

 Aaron 1 absorb 1 accompanied 4

 A&A&U& 1 absorbed 4 accompanying 1

 A&A&U&'s 1 abstaining� 1 accomplish 2

 abandoned 3 abstention 1 accomplished 4

 abandonment 1 abuse 1 accomplishment 1

 Abatuno 1 abuses 2 accord 2

 Abbey 1 acacia 3 according 23

 Abe 1 academic 10 accordion 1

 Abel 1 academies 1 accosted 2

 Abell 1 Academy 4 account 10

 abide 1 Accardo 1 accounted 2

 abilities 1 accelerated 1 Accounting 1

 ability 9 accent 1 accounts 2

 ablaze 1 accented 1 accredited 1

 able 24 accept 8 accumulation 1

 Abner 1 acceptable 3 accurate 1

 aboard 3 acceptance 4 accuse 1

 abolish 2 accepted 5 accused 8

 Abolition 1 accepting 2 Ace 3

 abortive 2 access 3 Achaeans 1

 about 147 accessories 1 Achaeans' 1

 above 16 accessors 1 achieve 6

 Abra 1 accident 7 achieved 3

 Abraham 1 accidentally 1 achievement 15

 abroad 4 acclaim 1 achievements 1

 abrupt 1 acclaimed 2 achieves 1

 absence 1 acclimatized 1 aching 1

Figure 4. Word list in alphabetical order

� the 6383 have 265 home 131

 of 2859 not 256 also 129

 and 2184 Mrs& 253 her 121

 to 2143 were 252 no 119

 a 2122 would 246 over 119

 in 2020 which 245 into 115

 for 968 new 241 some 113

 that 826 their 231 only 111

 is 733 been 212 made 107

 was 716 one 212 we 107

 on 690 There 189 if 103

 He 642 more 184 time 102

 at 636 all 180 years 102

 with 567 its 178 three 100

 be 526 I 177 House 96

 as 517 last 177 them 96

 by 503 or 175 any 95

 It 477 two 174 what 95

 his 428 Mr& 170 can 94

 said 406 when 169 week 94

 will 389 up 168 before 93

 from 353 other 164 him 93

 are 329 out 162 may 93

 This 319 first 158 City 91

 an 311 state 153 under 91

 has 301 After 151 could 87

 but 283 about 147 now 87

 had 280 presiden 142 school 87

 who 268 year 142 four 82

 They 267 than 138 Most 81

Figure 5. Word list in frequency order

� R01 026 and dunes They're better off, I tell you I saved their souls". The de

 R01 026 hey're better off, I tell you I saved their souls". The detective, co

 R01 061 rs I've been murdering women. I can lead you to every one of the bodi

 R01 093 ean more publicity for Welch. I knew that both these cynics were wait

 R01 100 eputation of a helpless girl! I studied Welch closely as the trial pr

 R01 102 warted. It wasn't long before I sensed that there was something deepe

 R01 108 erseded by some luckier chap. I did not rest until I had tracked the

 R01 108 er chap. I did not rest until I had tracked the mystery down. Well, h

 R01 141 these first days of the trial I didn't have as much time to commisera

 R01 142 to commiserate with Viola as I should have liked. In the first place

 R01 146 girl, no matter how innocent. I couldn't invite Viola to our house, f

 R01 154 lly famous trade in pickles). I hated being dragged into the salons o

 R01 164 at long last came a time when I broke away from Mother and her societ

 R01 168 alas, to my own mother. When I arrived at Viola's I was shown, to my

 R01 169 er. When I arrived at Viola's I was shown, to my surprise, into the <

 R01 172 herself was preparing dinner. I sat and watched proceedings. There wa

 R02 001 and cooked by Viola herself. I realized that Hamlet was faced with a

 R02 005 themselves, after a fashion. I was saved from making the decision as

 R02 013 clutched the hand with which I was trying to hold the phone, claimin

 R02 016 ou hold on a second, please", I covered up the mouthpiece, and with m

 R02 019 e remoter reaches of Siberia. I promised to illustrate the lecture, i

 R02 021 n and recognizing the caller, I resumed my everyday voice. Soon we we

Figure 6. Concordance of word I in Section R of the Brown Corpus

� A 3 escaleras 1 números 1

 abandonados 1 esperanza 1 palomas 1

 aguas 1 fruto 1 paraíso 1

 al 1 furiosos 1 podridas 1

 allí 1 gime 1 por 1

 amores 1 habrá 1 porque 1

 angustia 1 hay 1 posible 1

 aristas 1 huesos 1 primeros 1

 arte 1 huracán 1 que 4

 aurora 3 inmensas 1 recibe 1

 boca 1 juegos 1 saben 1

 buscando 1 la 4 salen 1

 cieno 2 las 4 sin 2

 columnas 1 leyes 1 su 1

 comprenden 1 Los 2 sudores 1

 con 1 llega 1 sus 1

 cuatro 1 mañana 1 taladran 1

 chapotean 1 monedas 1 tiene 1

 de 6 nadie 1 un 1

 deshojados 1 nardos 1 van 1

 devoran 1 negras 1 veces 1

 dibujada 1 ni 2 y 4

 en 2 niños 1 Yor 2

 enjambres 1 no 2

 entre 1 Nueva 2

Figure 7. Word list showing alphabetization of Spanish

� ill 2

 A04 157 early concluded that Laos was ill suited to be an ally, unlike its mo

 A19 079 "fair". Police said he became ill while parked in front of a barber s

 I'll 9

 A06 177 r the primary", he promised, "I'll be explicit on where I stand to br

 A11 092 ", Hansen added, "but I think I'll move better carrying a little less

 A12 165 aid Stram, quipping, "I think I'll put that play in the book". The e

 A14 164 , a man who knows the rules. "I'll do as you say, but I'll also play

 A14 165 les. "I'll do as you say, but I'll also play a provisional ball and g

 A19 061 hese are the board's minutes. I'll write what you tell me to". For a

 A21 109 people anywhere in the world. I'll need more than a single day to fin

 A39 110 boy. "That's [Yogi] Berra's. I'll never forget one time I struck out

 A39 125 a team of nine angry men and I'll give you a team of nine gentlemen

 Ill& 5

 A03 170 te Republican Leader Dirksen [Ill&] and House Republican Leader Charl

 A08 011 at Scott Field in Belleville, Ill&. Before entering the service, Pfa

 A15 132 ave a doubleheader at Quincy, Ill&, Saturday. #HAPPY HITTING# If it's

 A17 162 & Howard M& Dean of Hinsdale, Ill&, and Mrs& James A& Reeder of Shrev

 A28 001 ir fellow builders". _ELBURN, ILL&_� Farm machinery dealer Bob Houtz

 illegal 3

 A03 040 "by unfair and fundamentally illegal means". Karns said that the cas

 A36 155 tion strike and would make it illegal for any union to act in concert

 A39 022 t the knock�down pitch is now illegal. Experts point to the thinning

Figure 8. Concordance showing apostrophe and & as diacritics

� ill 11

 A04 157 early concluded that Laos was ill suited to be an ally, unlike its mo

 A06 177 r the primary", he promised, "I'll be explicit on where I stand to br

 A11 092 ", Hansen added, "but I think I'll move better carrying a little less

 A12 165 aid Stram, quipping, "I think I'll put that play in the book". The e

 A14 164 , a man who knows the rules. "I'll do as you say, but I'll also play

 A14 165 les. "I'll do as you say, but I'll also play a provisional ball and g

 A19 061 hese are the board's minutes. I'll write what you tell me to". For a

 A19 079 "fair". Police said he became ill while parked in front of a barber s

 A21 109 people anywhere in the world. I'll need more than a single day to fin

 A39 110 boy. "That's [Yogi] Berra's. I'll never forget one time I struck out

 A39 125 a team of nine angry men and I'll give you a team of nine gentlemen

 Ill& 5

 A03 170 te Republican Leader Dirksen [Ill&] and House Republican Leader Charl

 A08 011 at Scott Field in Belleville, Ill&. Before entering the service, Pfa

 A15 132 ave a doubleheader at Quincy, Ill&, Saturday. #HAPPY HITTING# If it's

 A17 162 & Howard M& Dean of Hinsdale, Ill&, and Mrs& James A& Reeder of Shrev

 A28 001 ir fellow builders". _ELBURN, ILL&_� Farm machinery dealer Bob Houtz

 its 203

 A01 044 which has been under fire for its practices in the appointment of app

 A01 047 court "has incorporated into its operating procedures the recommenda

 A01 050 's wards from undue costs and its appointed and elected servants from

 A01 106 em which the party opposes in its platform. Sam Caldwell, State High

 A01 114 rgia Legislature will wind up its 1961 session Monday and head for ho

 A02 004 tered down considerably since its rejection by two previous Legislatu

 A02 069 NATE} quickly whipped through its meager fare of House bills approved

 A02 077 ulf Coast district. Money for its construction will be sought later o

 A02 129 that Dallas is paying for all its water program by local bonds, and t

 A03 031 retary, replied, "I would say it's got to go thru several more drafts

 A03 176 g", but made no prediction on its fate in the House. _WASHINGTON, FEB

Figure 9. Concordance showing apostrophe as padding letter

�

 long 56

 A01 167 y raises. _COLQUITT_� After a long, hot controversy, Miller County ha

 A02 178 he report, culminating a year long study of the ~ADC program in Cook

 A02 180 re consulting firm, listed 10 long range recommendations designed to

 A04 011 who have never, or not for a long time, had such problems. The night

 A04 070 have to carry out obligations long since laid down, but never complet

 A07 099 1958. This would provide for long�term Federal loans for constructio

 A07 159 made by a panel of eight in a long and detailed report. The report wa

 A08 032 deral buildings, some a block long and all about seven�stories high.

 A08 065 serving the political scene a long time, no script from the past is w

 A08 173 ne that most try to avoid, as long as they can see an alternative app

 A10 024 the people in, and added, "so long as people rebel, we must not give

 A10 189 the U&S& mails to defraud as long as there is evidence of a conspira

 A11 060 ror. Then Robinson slammed a long double to left center to score bot

 A12 063 ng, he said: "That won't last long". It didn't; Monday, he had four L

 A12 090 the game's, final play, was a long pass by quarterback Bob McNaughton

 A13 177 ird Frank Robinson hammered a long home run deep into the corner of t

 A14 079 , Shea owned and operated the Long Island Indians, a minor league pro

 A14 135 n gully. Willie's partner was Long Jim Barnes, who tried to keep coun

 A14 138 on project. "Thirteen", said Long Jim. "Nae, man", said Willie, "ye

 A15 036 ing back in the groove before long. Our pitching is much better than

 A15 153 how they're handled, just as long as their names are spelled correct

 A19 052 iams, Jr&, a board member and long�time critic of the superintendent,

 A19 184 g market today. Trouble�free, long�life, quality components will play

 A21 133 ern High School in June. The long crisis in Laos appeared nearing a

 A22 014 h are available to it only so long as it conforms to the aforemention

 A23 040 d, he said, and added Field's long service in state government and we

 A24 197 o that he was associated with Long Island University in Brooklyn. _AS

 A26 020 he Morton Foods issue was hot long before it was on the market. Indee

 A26 055 ic mind of late. Foods, which long had been considered "recession res

 A29 034 use they are designed for her long�bodied silhouette. She also likes

 A29 077 s must have ogled him all day long� but he dutifully kept his eye on

 A29 145 hed panels decorate a 60�inch long chest. An interesting approach to

Figure 10. Concordance showing hyphen treated as a word separator

�

 glanced 2 A40 116, A42 058 A17 007, A17 039, A19 001, A19 144,

 A20 055, A21 034, A21 096, A21 134,

 financed 2 A03 086, A44 034 A21 139, A21 166, A22 001, A24 189,

 A25 084, A25 197, A27 097, A28 108,

 advanced 6 A20 077, A27 065, A32 004, A32 011, A32 080, A33 032,

 A27 066, A34 163, A36 003, A44 022 A34 013, A37 192, A38 125, A40 046,

 A40 065, A41 122, A41 146

 experienced 4 A01 024, A10 169,

 A40 167, A44 121 pronounced 3 A09 108, A19 037,

 A37 087

 silenced 1 A42 125

 forced 8 A02 187, A06 031,

 commenced 1 A41 114 A14 023, A14 068, A19 194, A28 015,

 A36 056, A36 144

 sentenced 3 A20 041, A20 166,

 A23 069 enforced 3 A02 020, A03 187,

 A19 103

 convinced 6 A31 128, A34 007,

 A34 022, A34 051, A34 102, A42 020 divorced 1 A20 015

 ensconced 1 A40 012 reduced 6 A02 041, A11 119,

 A20 089, A28 069, A28 115, A35 183

 bounced 5 A11 048, A11 056,

 A11 123, A25 193, A38 030 produced 6 A01 002, A33 070,

 A34 032, A34 036, A34 153, A39 025

 denounced 1 A36 132

 reproduced 1 A20 058

 announced 37 A01 085, A04 051,

 A04 189, A06 085, A08 002, A10 002, introduced 10 A02 036, A06 128,

 A11 152, A12 121, A14 006, A15 011, A06 166, A15 089, A20 145, A20 146,

Figure 11. Index showing words sorted by their endings (reverse index)

� allotting 1

 A26 006 the stock; it was more one of allotting a few shares to a number of c

 allowing 5

 A03 110 e care under a "unit formula" allowing more of such care for those wh

 A20 090 size, and also in complexity, allowing a single propeller to be used,

 A23 140 cal experience in business by allowing them actually to form small co

 A30 157 e height of the light socket, allowing three to four inches above the

 A36 029 Defense Department regulation allowing costs of a type generally reco

 amazing 1

 A39 033 d every challenger was Ruth's amazing September surge. In the final m

 amending 1

 A07 098 some quick progress on a bill amending the National Defense Education

 announcing 2

 A21 083 Association, followed that by announcing plans last night for a door�

 A32 010 Cecilia Orchestra in Rome. In announcing Jorda's return, the orchestr

 anything 10

 A13 094 was a double�crosser and said anything he (Liston) got was through a

 A13 155 ally they were helpless to do anything about the nationwide policy}.

 A26 052 ket at, and everyone who knew anything about it expected the Morton s

 A31 115 and business firms. Is there anything a frustrated individual can do

 A31 125 ism, but never felt there was anything he, as an individual, could do

 A35 126 cademic world there is seldom anything so dramatic as a strike or a b

 A37 116 was the only man who could do anything effective. In a tense, closed�

 A39 121 by Farrell: "I'm not learning anything on the bench. Play me". (Farre

 A40 017 hing" just "in case he spills anything", Frankie got so mad at the ch

 A40 066 ste is gaudy. I'm useless for anything but racing cars. I'm ruddy laz

 apartment�building 1

 A19 176 uilders to concentrate in the apartment�building field. Although econ

 appealing 2

 A30 171 calloped edge is particularly appealing. TODAY'S trend toward furnit

 A41 149 mumba was a Communist. Before appealing to the U&N& or to Russia, he

Figure 12. Concordance of words ending in ing

�

 in front of 8

 A11 053 el's wild pitch into the dirt in front of the plate. The Flock added

 A11 148 save place money only a head in front of Glen T& Hallowell's Milties

 A19 067 h a recording machine sitting in front of him. The Board of County C

 A19 079 id he became ill while parked in front of a barber shop at 229 West P

 A20 155 d his south bound express bus in front of Dunbar Vocational High scho

 A30 070 doesn't like to be driven up in front of a school in a car driven by

 A30 085 of status when I am driven up in front of work in a car driven by my

 A38 164 o he put the ball in a bunker in front of the green. His bogey 4 on t

 In honor of 2

 A16 151 ana Mason, also an ex�singer. In honor of the Wackers' new baby. Fur

 A17 012 planning a luncheon next week in honor of {Mrs& J& Clinton Bowman}, w

 in sales of 1

 A23 136 mpany set records with $2,170 in sales of its products, a selection o

 in satisfaction of 1

 A25 178 ney for the loan association, in satisfaction of mechanic's liens on

 in search of 1

 A22 126 ng into the home of relatives in search of his wife, hitting his uncl

 in spring of 1

 A23 076 ries of 15 Portland robberies in spring of 1959 in which the holdup m

 in support of 1

 A30 021 pment industry to raise funds in support of this cultural center for

Figure 13. Concordance of phrase in <anyword> of

� R02 101 was wine in the pot roast or that the chicken had been marinated in

 R06 151 ce fiction has always assumed that the creatures on the planets of a

 R06 089 t you must have heard it said that the drawing�room disappeared forev

 R06 153 ed fruit bats. It seems to me that the first human being to reach one

 R02 004 on an ascending scale, seeing that the girls dressed themselves, afte

 R02 168 e kitchen. Then, I remembered that the girls had had a banana for des

 R02 029 and I be there. I discovered that the girls had shrewdly vacated the

 R09 065 the widespread Western belief that the Lord Buddha is the most compas

 R09 172 ovelist's carping phrase, was that the lower lip was a trifle too vol

 R09 113 fter a while, we became aware that the money was disappearing as fast

 R09 163 to continue your vocation, is that the next time you're attracted by

 R09 130 rning, we discovered not only that the pennies were missing from the

 R06 177 cardinal rules of writing is that the reader should be able to get s

 R08 007 dead at his feet, informs him that the Saracens have invaded Silesia,

 R08 162 Mailer), but no one can deny that the screen crackles with electrici

 R07 011 ark and it's a city ordinance that the statues cannot be crawled on".

 R03 018 two months, it was announced that the studio "owed" the government a

 R04 094 sturdy legs to a heavy top so that the whole thing didn't wobble like

 R08 035 probably very few people know that the word "visrhanik" that is bante

 R02 076 ld be no dust anywhere and so that their children would color in the

 R02 093 ite human. It seemed, indeed, that their house was not so much a home

 R01 011 Avocado Avenue, they learned that their man, having paused to get oi

 R02 045 mber, and sitter to call (not that there was much of a choice, since

 R01 102 t wasn't long before I sensed that there was something deeper than ov

 R02 100 ". She always let it be known that there was wine in the pot roast or

 R04 020 became increasingly apparent that there were to be no dogs in the pi

 R04 004 found it. It wasn't his fault that these things were so. The difficul

 R08 111 vernment tutor. The innocence that they tried to conceal at the begin

 R02 094 ther a perfect stage set, and that they were actors who had been hand

 R02 057 she and Herb met and decided that they were in love. They were marri

 R02 132 ia were distinguished only in that they were, to me at least, indisti

 R04 025 they would become so confused that they would have nervous breakdowns

Figure 14. Concordance showing occurrences of that sorted by right context

� R06 017 seem to remember", he said, "that in an interview ten years ago you

 R06 089 t you must have heard it said that the drawing�room disappeared forev

 R07 170 herself with curiosity. "Say that again", she pleaded. She laughed a

 R09 155 oks at it, therefore, I'd say that your horoscope for this autumn is

 R06 110 I said. "Oh, I forgot to say that if one is taken to the funny house

 R05 031 would you care to have us say that you were misquoted in regard to it

 R06 101 disturbing, as when one says that a friend is acting funny; and frig

 R08 174 gical culmination of a school that started with Monet, progressed thr

 R07 172 ss. "You what"? She could see that Mr& Gorboduc was intrigued; the ho

 R09 152 rly a man <in extremis>. "See that guy"? the operator asked pityingly

 R05 055 standard device. ""Do you see that pretty girl standing next to the c

 R02 004 on an ascending scale, seeing that the girls dressed themselves, afte

 R02 031 in the living room. It seemed that I would be the gainer if I accepte

 R01 002 ograph of Barco! For it seems that Barco, fancying himself a ladies'

 R05 162 ", said the woman, "I've seen that picture already". Another brand o

 R01 102 t wasn't long before I sensed that there was something deeper than ov

 R02 147 that I mistrusted bake shops that called themselves "Sanitary Bake S

 R03 007 round and Major Bowes shows) "That Man in the White House, like some

 R02 175 received in a stunned silence that was evidence in itself of the dear

 R04 130 n and it all seemed so simple that he didn't like to disclose his ign

 R07 055 her feet, winking and smiling that enormous smile (she had lots of wo

 R02 076 ld be no dust anywhere and so that their children would color in the

 R03 138 Mother Cabrini, and timed so that its release date would coincide wi

 R04 094 sturdy legs to a heavy top so that the whole thing didn't wobble like

 R07 021 "Never mind. I know something that is much more fun that we can do on

Figure 15. Concordance showing occurrences of that sorted by left context

� FREQUENCY RELATIVE NUMBER WORDS IN VOCAB WORD PERC. OF PERC. OF PERC. OF

 FREQUENCY SUCH FREQUENCY TOTAL TOTAL VOCAB WORDS WORDS IN FREQ.

 1 0.00112 6995 6995 6995 6995 52.82 7.87 7.87 2 0.00225 2053 4106 9048 11101 68.32 12.49 4.62 3 0.00337 1018 3054 10066 14155 76.00 15.92 3.43 4 0.00450 624 2496 10690 16651 80.72 18.73 2.81 5 0.00562 456 2280 11146 18931 84.16 21.29 2.56 6 0.00675 325 1950 11471 20881 86.61 23.49 2.19 7 0.00787 233 1631 11704 22512 88.37 25.32 1.83 8 0.00900 188 1504 11892 24016 89.79 27.01 1.69 9 0.01012 133 1197 12025 25213 90.80 28.36 1.35 10 0.01125 118 1180 12143 26393 91.69 29.68 1.33 11 0.01237 100 1100 12243 27493 92.44 30.92 1.24 12 0.01350 82 984 12325 28477 93.06 32.03 1.11 13 0.01462 77 1001 12402 29478 93.64 33.15 1.13 14 0.01575 61 854 12463 30332 94.10 34.11 0.96 15 0.01687 59 885 12522 31217 94.55 35.11 1.00

 212 0.23844 2 424 13206 57477 99.71 64.64 0.48 231 0.25981 1 231 13207 57708 99.72 64.90 0.26 241 0.27105 1 241 13208 57949 99.73 65.18 0.27 245 0.27555 1 245 13209 58194 99.74 65.45 0.28 246 0.27668 1 246 13210 58440 99.74 65.73 0.28 252 0.28343 1 252 13211 58692 99.75 66.01 0.28 253 0.28455 1 253 13212 58945 99.76 66.30 0.28 256 0.28793 1 256 13213 59201 99.77 66.58 0.29 265 0.29805 1 265 13214 59466 99.77 66.88 0.30 267 0.30030 1 267 13215 59733 99.78 67.18 0.30 268 0.30142 1 268 13216 60001 99.79 67.48 0.30 280 0.31492 1 280 13217 60281 99.80 67.80 0.31 283 0.31829 1 283 13218 60564 99.80 68.12 0.32 301 0.33854 1 301 13219 60865 99.81 68.46 0.34 311 0.34978 1 311 13220 61176 99.82 68.81 0.35 319 0.35878 1 319 13221 61495 99.83 69.16 0.36 329 0.37003 1 329 13222 61824 99.83 69.53 0.37 353 0.39702 1 353 13223 62177 99.84 69.93 0.40 389 0.43751 1 389 13224 62566 99.85 70.37 0.44 406 0.45663 1 406 13225 62972 99.86 70.83 0.46 428 0.48137 1 428 13226 63400 99.86 71.31 0.48 477 0.53649 1 477 13227 63877 99.87 71.84 0.54

 503 0.56573 1 503 13228 64380 99.88 72.41 0.57 517 0.58147 1 517 13229 64897 99.89 72.99 0.58 526 0.59160 1 526 13230 65423 99.89 73.58 0.59 567 0.63771 1 567 13231 65990 99.90 74.22 0.64 636 0.71531 1 636 13232 66626 99.91 74.93 0.72 642 0.72206 1 642 13233 67268 99.92 75.66 0.72 690 0.77605 1 690 13234 67958 99.92 76.43 0.78 716 0.80529 1 716 13235 68674 99.93 77.24 0.81 733 0.82441 1 733 13236 69407 99.94 78.06 0.82 826 0.92901 1 826 13237 70233 99.95 78.99 0.93 968 1.08872 1 968 13238 71201 99.95 80.08 1.09 GT1000 1.12583 6 17711 13244 88912 100.00 100.00 19.92

 TYPE/TOKEN RATIO:0.14896

 TOTAL WORDS READ = 88912

 TOTAL WORDS SELECTED = 88912

 TOTAL WORDS PICKED = 88912

 TOTAL WORDS SAMPLED = 88912

 TOTAL WORDS KEPT = 88912

 TOTAL VOCABULARY = 13244

Figure 16. Part of a word frequency distribution

�Hockey: Figure captions

Figure 1. 	The beginning of Section A of the Brown Corpus showing the fixed format locators

Figure 2. 	The beginning of The Merchant of Venice showing COCOA-format markup

Figure 3. 	Part of Walter Pater, The Child in the House, encoded in TEI SGML by Wendell Piez

Figure 4. 	Word list in alphabetical order

Figure 5. 	Word list in frequency order

Figure 6. 	Concordance of word I in Section R of the Brown Corpus

Figure 7. 	Word list showing alphabetization of Spanish

Figure 8. 	Concordance showing apostrophe and & as diacritics

Figure 9. 	Concordance showing apostrophe as padding letter

Figure 10. 	Concordance showing hyphen treated as a word separator

Figure 11.	 Index showing words sorted by their endings (reverse index)

Figure 12.	 Concordance of words ending in ing

Figure 13.	Concordance of phrase in <anyword> of

Figure 14.	Concordance showing occurrences of that sorted by right context

Figure 15.	Concordance showing occurrences of that sorted by left context

Figure 16. 	Part of a word frequency distribution�The Unix™ Language Family

John M. Lawler

University of Michigan

General

The Unix™�operating system is used on a wide variety of computers (including but not lim�ited to most workstation-class machines made by Sun, Hewlett-Packard, MIPS, NeXT, DEC, IBM�, and many others), in one or another version. If one is around computers almost anywhere, one is within reach of a computer running Unix. Indeed, more often than not Unix is the only choice available for many computing tasks like E-mail, number-crunching, or running file servers and Web sites. One of the reasons for the ubiquity of Unix is that it is the most influential operat�ing sys�tem in his�tory; it has strongly affected, and contributed features and development phi�lo�sophy to al�most all other operating systems.

Understanding any kind of computing without knowing any�thing about Unix is not unlike trying to understand how Eng�lish works without knowing any�thing about the Indo-European family: that is, it’s not impossible, but it’s far more difficult than it ought to be, because there appears to be too much unexplainable arbitrariness.

In this chapter I provide a linguistic sketch� of the Unix operating system and its family of “lang�uages”. I use the word language here in its usual sense in computing contexts; since computer lan�g�uages are not at all the same kind of thing as natural human languages, clearly this is a meta�phor�ical usage. However, mo�dern linguistic theory, strongly influenced as it is by computer sci�ence, is capable of de�scri�bing the Unix language family rather well, because these “languages” possess some of the ideal char�acteristics posited by linguistic theories: they are completely regular, they exist in a homogene�ous community, they are unambiguous, they are context-free, they are mod�ular in de�sign and structure, they are acquired (by computers, if not by humans) in�stantane�ously and iden�ti�cally, they are universally interpretable in an identical fashion (barring per�for�m�ance details), and there is in prin�ciple no difference between one user and any other. Conse�quently the metaphor has considerable utility here for anyone familiar with linguistics. This situation is not in fact coinci�dental, since Unix was de�signed in the first place by people familiar with modern syntactic theory and its computer science analogs, and it shows. As a result, linguists will find much here they can recognize, though perhaps in unfamiliar surround�ings. To that extent this chap�ter is simply applied linguis�tics. But Unix is also useful for applying linguistics, as I attempt to demonstrate.

History and Ethnography of Computing

Unix is an operating system (OS). This is a special type of computer program that is, in a very im�por�tant sense, a syntactic theory that completely constrains (i.e, defines, enables, and limits) all the pro�grams that can run on a particular computer. In effect, the computer per se runs only the OS, and the OS runs everything else. Up until the 1970s, and for some time thereafter, it was normal in the com�pu�ter industry for an operating system to be proprietary; that is, it was typically developed and sold by the makers of a particular computer along with the computer, and was limited to running on that computer alone. Any program that was to be run on that computer would have to be compatible with its OS, which varied markedly from computer to computer, limiting the pos�si�bility of widespread use of any program. Apple’s Macintosh-OS has been a proprie�tary op�er�at�ing system for most of its existence, for instance, and the same is true of DEC’s VMS; thus a program that runs on a Mac�intosh will not run on any other machine�. MS-DOS, on the other hand (which has been in�flu�enced signifi�c�antly by Unix), is an example of a non-proprietary (or open) OS. Unix was the first suc�cessful op�en op�erating system.

Unix began in 1969 at Bell Laboratories in New Jersey. Ken Thompson, a member of the tech�nical staff, put together a small operating system, and over the next several years, modified and developed it in collaboration with his colleagues, notably Dennis Ritchie and Brian Kernighan. This group� was also instrumental in developing at the same time two programming phenomena that have become totally integrated into Unix, and vice versa: the Software Tools movement, often called a ‘philosophy’�, and the C programming language.� They produced a number of en�or�mously influential books� still to be found almost three decades later on the desk of most seri�ous pro�grammers and system designers; this is a sig�nal accomplishment in a publishing era where one year’s computer books are inevitably the next year’s landfill.

The Software Tools ‘philosophy’ gives an idea of why Unix is the way it is. The meta�phoric image is that of a matched set of hand- or machine-tools that are capable of being snapped together ad lib into any number of super-tools for specialized work on individual prob�lems. If you had to make table legs, for instance, you might, with this set of tools, in this virtual re�ality, hook up your saw to your plane, and then to your lathe, and finally to your sander, just so, feed in sticks of wood at one end of this ad-hoc assemblage, and receive the finished table legs at the other end. Real tools don’t work that way, alas, but software tools can, if they’re designed right. The basic prin�ciple is to make available a number of small, well-crafted, bug-free programs (tools) that:

�SYMBOL 183 \f "Symbol" \s 10 \h�	do only one well-defined task

�SYMBOL 183 \f "Symbol" \s 10 \h�	do it intelligently and well

�SYMBOL 183 \f "Symbol" \s 10 \h�	do it in a standard and well-documented way

�SYMBOL 183 \f "Symbol" \s 10 \h�	do it flexibly, with appropriate user-chosen options available

�SYMBOL 183 \f "Symbol" \s 10 \h�	take input from or send output to other pro�gram tools from the same toolbox

�SYMBOL 183 \f "Symbol" \s 10 \h�	do something safe, and if possible useful, when unanticipated events occur.

Linguists are familiar with at least the spirit of this concept as the principle of modularity in syntactic theory. Modular design is a watchword in computer science as well as syntax, however, since it allows easy construction of ad-hoc assemblages of tools for individual tasks, just as English syntax allows easy construction of ad-hoc assemblages of ideas for individual purposes, i.e, the proverbial infinite number of sentences.

For example, consider the task of preparing a lexical speculum. This is simply a wordlist in reverse alphabetic order, so that bring and string might be ad�jacent, for instance; in a suffixing language like English, such lists have obvious utility for linguists. (See the previous chapter for more discussion of wordlists.) They are im�mensely difficult to prepare by hand, however, and they can be tedious to program even on a com�puter. Below I present the Unix solution to this problem in the form of a linguistic data analysis problem���; the answer follows. First, some preliminary information: word.big is an old wordlist from the University of Michigan’s MTS mainframe system, salvaged from its demise. It was used by faculty and students for 20 years to spellcheck their email and papers, so it’s full of unusual words, in all their paradigmatic forms. To be precise as to the quantity, if not the quality, wc reports that it contains 70,189 words on 70,189 lines, for a total of 681,980 bytes (including 70,188 newline characters):

% ls -l word.big �SYMBOL 191 \f "Symbol"�

-rw-r--r-- 1 jlawler 681980 Mar 17 1995 word.big

% wc word.big �SYMBOL 191 \f "Symbol"�

 70189 70189 681980 word.big �

And now the problem. The numbering is added for reference; the rest is verbatim. If you type A-D at the ‘%’ Unix prompt, you get back 1-10. Describe the syntax and semantics of A-D. Are there any generalizations?

A. % head word.big �SYMBOL 191 \f "Symbol"�

a

A

aardvark

aardwolf

aba

abaca

abaci

aback

abacterial

abacus

B. % head word.big | rev �SYMBOL 191 \f "Symbol"�

a

A

kravdraa

flowdraa

aba

acaba

icaba

kcaba

lairetcaba

sucaba

	Figure 1a.	Data Analysis Problem (A-B)

�C. % head word.big | rev | sort �SYMBOL 191 \f "Symbol"�

1. A

2. a

3. aba

4. acaba

5. flowdraa

6. icaba

7. kcaba

8. kravdraa

9. lairetcaba

sucaba

D. % head word.big | rev | sort | rev �SYMBOL 191 \f "Symbol"�

A

a

aba

abaca

aardwolf

abaci

aback

aardvark

abacterial

abacus

	Figure 1b.	Data Analysis Problem (C-D)

�Using software tools (specifically the Unix programs sort and rev, and the Unix conventions of input-output (I/O) redirection), and given a wordlist file (with one word to a line, easy enough to prepare from any text via other Unix tools�) named word.big, the follow�ing com�mand will pro�duce a file named speculum:

% rev word.big | sort | rev > speculum

A parse of this command line shows it to be very straightforward:

 %	the Unix C-shell (csh) prompt; this is the context for the command that follows�rev	send to output a reversed copy of each line in source file:

	word.big	name of source (unmarked ablative) file, which is to be read only

	|	a pipe marker, connecting the output of rev to the input of:

	sort	sort input� alphabetically by line

	|	another pipe, linking the output of sort to the input of:

	rev	(another copy of) the same program invoked in the first clause

	>	dative case marker, indicating where the output stream should be stored

	speculum		name of goal (dative) file containing final output; to be written only.

	Figure 2.	Parse of command line:

	rev word.big | sort | rev > speculum

The command is executed by sending the line to csh, which interprets and executes it. This in turn is accomplished by pressing RETURN at the end of the line, which may be considered a performance detail.

The programs sort and rev are both filters�; i.e, they belong to a class of programs that read a file and do things sequentially to what they find, sen�ding their output to a standard output.� This in turn can be�come the standard input to the next program in the pipeline. This is not unlike the kind of processing that linguistic theories posit for various components of a derivation, and is directly related to the modularity inherent in the Software Tools design philosophy. rev simply reverses the characters on each line it en�counters, while sort sorts files alphabetically by line.

The first part of the command above tells the OS to use rev on the file word.big, pro�du�cing a stream of individually reversed lines. In Figure 1 above, the stream was limited to ten lines by using the head program, which simply shows the first few lines of a text file, defaulting to ten; in this command, however, the full word.big file would be the stream.

This stream is piped as input to sort, and sort’s output is repiped to another copy of rev, this time re-re�ver�sing the (now sorted) strings. Fin�ally, the resultant stream is parked in a file called speculum; the original file word.big is not affected by this operation, since it is only read, not written. In a test on a Sun workstation, with a word.big of 79,189 words, production of a speculum file by this method took less than one second.

The success of this combination of Unix, Software Tools, and C is evident from the facts:

�SYMBOL 183 \f "Symbol" \s 10 \h� 	that C is the programming language in which Unix, the most widely-used�operating system in the world, is written;

�SYMBOL 183 \f "Symbol" \s 10 \h�	 that all the Software Tools programs are available, in C, on Unix, which is designed for their use and fits them best (though they are also available elsewhere, and in other languages);

	�SYMBOL 183 \f "Symbol" \s 10 \h�	 that C is the most widely used professional programming language in the world; ��any pop�u�lar microcomputer program, for example, was almost certainly writ�ten in C.

Many of the software tools on Unix had their origin in the Tools movement, all were writ�ten in C, and all shared a common interface language, differing only occasionally in details of sem�antics and gram�mar. In addition, many of these tool programs (e.g, awk, sed, perl; see section 6 be�low) evolved sublan�g�uages of their own with a common core of structure, and these in turn came to influence Unix. A well-thought-out set of tools, and ways of combining them into useful pro�grams, has many simi�lar�ities to a well-thought-out set of phrases, and ways of combining them into use�ful speech. And, while their complexity does not approach that of a real natural lang�uage, the struc�ture can be ap�pre�hended in similar ways, and this fact was not lost on the dev�elopers: Unix has been oriented from the start to�ward the written word, with numbers only in�ci�dental. Indeed, its first user was Bell Labs’ word-processing department.

Gradually, the fame of Unix spread outside the lab. AT&T, Bell Labs’ parent company, was at that time enjoined as a regulated monopoly from engaging in the software business, and thus the un�looked-for advent of a popular software product with its attendant demand was some�thing of an embarrassment to the company. Their solution to this problem was almost as remarkable as its origin: AT&T es�sen�tially gave away Unix. For educational institutions, AT&T granted inexpensive licenses to run Unix on appropriate machines (originally PDP, later Digital’s VAX line, eventually machines de�signed especially for Unix), with full source code (in C) included. This meant that not only were the universities (in the personae of the students and staff of computing centers and computer sci�ence departments, and interested others) able to run Unix, but they were also able to modify it by changing its source code. Development proceeded rapidly at a number of sites, most im�por�t�antly at the University of California at Berkeley, resulting even�t�ually in the various releases of the Berkeley Standard Distribution of Unix (BSD), which was al�so free, and rapidly became the standard operating system for many computers.

This was particularly significant for American academic computing, since the late 1970s and early 80’s was the period in which most universities switched over from large mainframe cen�tral�ized computing services to distributed departmental minicomputers, frequently running Unix. Many of the design decisions in BSD Unix and its successors were thus made by academics, not bus�i�nessmen, and this strongly in�fluenced subsequent de�v�el�opments. Perhaps more importantly, the on-line culture that grew up around Unix, and proliferated into Usenet and then the World Wide Web, was an academic culture, not a business culture, with significant differences that were to become far more evident and important.

By the time 4.2BSD was released in 1983, AT&T had been become free under the law to do something commercial with the rights it still held to the Unix operating system. However, the com�mercial, business-oriented System V ver�sion of Unix (SysV) released by AT&T that year to take advantage of this opportunity had serious incompatibilities with the BSD Unix that had grown up in academe in the previous decade, and an anxious diglossia ensued. Decreolization of these and other Unix versions in the form of eventual standardization of the competing versions is now being pursued and in many cases has been effectively achieved; but to this day, every version of Unix has its idioms, its gaps, its own minor examples of Traduttore, tradi�tore. In this survey I do not treat dialectal variations, but rather concentrate on the many mutu�ally-intelligible characteris�tics found in every version of Unix.

There are many fuller accounts available of the diachronic and dialectal development of Unix. The best and most thorough is Salus (1994), which has the additional virtue (for the pur�poses of this chapter) of having been written by a historical linguist who was personally involved with the develop�ment of Unix. For synchronic analyses, the best source ishtt�p://www.isc.tamu.edu/misc/jargon/ Ray�mond (1995), the printed version of an ongoing elec�tronic lexicography project of impressive ling�uistic so�phis�ti�cation.

Bits and ASCII: Phonetics and Phonology

Unix, like all computing systems, makes use of the concept of the bit, or binary digit�. This is what linguists know as the concept of binary opposition, e.g, voiced/voiceless. Com�pu�t�ing exploits binary op�positions in electronic data to form its infrastructure, just as lan�guage ex�ploits binary oppositions in perceived phonation. Unix also exploits several important elab�or�a�tions of the bit: the byte, the line, and the byte stream. These etic units, which are literally built into the hardware, are structured by an emic system of byte interpretation called ASCII.�

ASCII Chart about here

	Figure 3.	ASCII Chart

In computing, just as in distinctive-feature theories, all oppositions are binary: plus and minus are the only choices for any feature. In computing, these are represented by 1 and 0. Since these are also digits, and the only digits needed in the representation of Binary (Base-2) integers, the possi�b�il�ity arises of combining these feature specifications in a fixed order to form se�quen�ces of digits, or num�bers. The fixed order is fixed by the manufacturer and may vary con�sid�er�ably, but virtually all Unix machines assemble bits into convenient groups of eight, which are called bytes. These are conven�ient be�cause they are sufficient to define a useful-sized set.

All linguists learn that in Turkish, eight phonologically distinct vowels are possible, be�cause there are three significant binary features, and 23 = 8; that is, there are eight different ways to com�bine all possible values of the three features. With bytes, the relevant equation is 28 = 256; that is, there are 256 different ways to combine the eight binary digits in a byte. 256 is an order of mag�ni�tude larger than the size of the English alphabet, and indeed the English alphabet is quite useful, even at that size. In fact, of course, the English alphabet (upper- and lower-case, sepa�rately coded), punctuation marks, dia�cri�tics, and a number of other symbols are all commonly coded in bytes, and that is by far the most com�mon use of the byte, so much so that it is useful mnemoni�cally to think of one byte as one Eng�lish letter.�

Here is a byte: 0 1 1 0 1 0 1 0 This is the Binary number that corresponds to the Dec�imal� number 106. It represents, in a tex�tual context, the (lowercase) letter “j”, which is num�ber 106 in ASCII. In a different context, this byte might represent the Decimal integer 106 it�self, or memory address 106, or instruction 106, or part of a more com�plex number, address, or in�struction. Computers use binary notation; writing numbers graph�ically is for humans, and com�puters will write numbers any way they are told. This byte is there�fore likely to exist, as such, not as one of a series of marks on paper, but rather as a series of mag�netic charges in fer�rite or silicon, or as a series of microdots on a compact disk (CD, or CD-ROM).

All Unix systems are built on ASCII, and all Unix files (or streams) are byte files which can be interpreted in ASCII, whether they are intended to be or not. The history of ASCII will not be treated here, but it would not be unfair to stress the fact that the “A” in the acronym ASCII stands for American, with all that that entails from a linguistic viewpoint. That is, ASCII represents just about everything that an early twentieth-century American engineer might have thought would be use�ful in a character code. This includes the upper- and lower-case English alphabet (coded cleverly to facilitate al�pha�betization), the Arabic numerals, ordinary punctuation marks, a pot�pourri of non-printing con�trol characters (like Line Feed), and virtually no “foreign” letters or symbols.

There is provision for representing some diacritics, as separate letters: thus Spanish, French, German, Italian, and other languages which use diacritics that have rough ASCII equi�v�a�lents (circumflex [caret ^], umlaut [quote mark "], acute [apostrophe '], grave [backquote `], til�de [~]) can be represented, though with some difficulty, and not always completely (there is no ASCII character except comma that can function as a cedilla, for instance). Languages like Tur�k�ish, Hungarian, Polish, or Czech, which use letters or diacritics that have no ASCII equiva�lents, are very difficult to represent properly. Languages with completely different alphabets, like Rus�sian, Arabic, or Hebrew, require heroic measures. And non-alphabetic writing systems like Chi�n�ese are out of the question; they require a completely different approach. Which is not to say that ASCII Romanization is impossible, of course.

Within its limitations, however, ASCII is very well-designed; a number of structural char�ac�teristics are worth pointing out. There are, to begin with, two parts of ASCII: Low ASCII, represented in the chart above, from Decimal, Hex, and Binary 0 through 127 (= 27-1: Hex 7F, Binary 01111111); and High ASCII, from Decimal 128 (= 27: Hex 80, Binary 10000000) through 255 (28-1: Hex FF, Binary 11111111). Only the Low ASCII characters are completely standard; High ASCII characters vary from machine to machine.

For instance, many of the same additional characters are included in both DOS/Windows and Macintosh text files, but not all; and they appear in dif�ferent or�ders, with different numbers. This is one reason why DOS and Mac text files are different. Unix cuts this Gor�dian knot by not using High ASCII at all to represent characters; only Low ASCII, the first 128 characters, are meaningful in Unix, and we will restrict our attention henceforth to these.

�The most recognizable characters in ASCII are the alphanumerics, that is, the letters of the (English) Latin alphabet plus the (English) Arabic numerals. Since the upper-case letters and the lower-case let�ters are etically different, they are coded separately; since they are emically related, they are coded analogously. The upper-case letters begin with A at Hex 41 (Decimal 65, Binary 01000001) and proceed alphabetically through Z at Hex 5A (Binary 01011010), while the lower-case letters go from a at Hex 61 (Decimal 97, Binary 01100001) through z at Hex 7A (Binary 01111010). It can easily be seen that the difference between any given upper- and lower-case let�ter is always exactly 32; in Binary terms, it’s even simpler: an upper-case letter has 0 in the third-high�est bit, while a lower-case letter has 1 there. Otherwise, they are identical; this fact makes it simple to design software to be case-sensitive, or case-insensitive, as desired.

One of the important facts about Unix, which often disconcerts novices, is that it is case-sen�sitive by default, since it uses Low ASCII fully. Individual programs may (and often do) ig�nore case, but unless told otherwise, Unix does not. This means that a directory named News is not the same as one named news, and will not be found or referenced by that name. And since sort order is de�t�er�mined by ASCII order, and uppercase letters precede lowercase, this also means that Zy�gote will appear in a sorted list before aardvark, unless the sorting software is told to ignore case. One convention that results from this fact is that the unmarked case for Unix commands, file�names, directories, and other special words is lower-case. Capitalized and ALL-CAP terms are nor�mally reserved, by convention, for special situations and system software, though there is no ab�solute prohibition imposed. For instance, most Usenet newsreaders (like rn or trn) expect to use (and will create if they don’t find one) a directory named News. (A further behavioral mo�d�i�fi�ca�tion produced by this convention is the decided predilection of some Unix users to eschew up�per case in ordinary written communication, even when not modulated by Unix.)

Another feature of ASCII worthy of note are the Control Characters, which are non-prin�t�ing, and represent an action of some sort; these may be considered supra-segmental analogs. Con�trol characters have their own official names, taken from their original purpose (usually on tel�e�type machines), which are normally acronymic or mnemonic in English. For instance, character no. 7, BEL (^G or Bell), originally rang the bell on a teletype, and now it often produces a noise of some sort on a com�puter, while no. 8, BS (^H or Back Space), originally moved the print head on a teletype back one space; now it is the code produced by the “BackSpace” key on most� keyboards.

The con�trol characters occupy the first two columns� of ASCII; thus their most significant bits are “0000” or “0001”. Their least significant bits are the source of their more common names, how�ever. Just as the last four bits of “J” and “j” are identical (“1010”), so are the last four bits of no. 10, LF (^J or Line Feed), which originally moved the teletype print head down one line, and is now found as the newline char�acter in Unix, among other uses�. Since, like all Con�trol char�ac�ters, this can be produced on a keyboard by pressing the “Ctrl” or “Control” shift key sim�ulta�ne�ously with another key – in this case the “J” key – LF is often called simply “Control-J”, or “Ctrl-J”, and frequently abbreviated, like all control characters, with a caret as “^J”.

All computer media, like writing or speech, imply a serial order. In print, we are used to the con�vention of lines of serially-ordered characters arranged horizontally on the page. For readers, a line is a more or less natural phenomenon, governed by paper and type size. In a com�puter, how�ever, there is no physical page, nor any type to have a physical size. So lines, if they are to be defined at all, must be defined, like everything else, by bytes. Text files are line files; they consist of strings of bytes with newline characters inserted wherever a text line should be displayed. An ASCII text file with 1000 lines of 60 characters each would thus have 61,000 bytes:� 60,000 letter bytes plus 1000 new�line characters. Many of the tools in Unix, like rev, work at the line level; others, like sort, work on whole files (though with reference to lines).�

Files are often called streams in Unix. Since a text file (and Unix is almost entirely com�posed of text files) is simply a string of bytes (some of which are probably newline characters), it is often con�venient to view the file itself as a single string, and this is always the case whenever anything like reading, writing, or modification has to be done to a file. In a computer, since there is no question of moving the perceptor, con�cep�tually it must be the bytes that are streaming past.

This metaphor is quite dif�ferent from the sta�tic concept im�plied by file: a stream is in mo�tion, can be used for power, pro�vides a con�tinuous supply of vi�tal resources, is all of the same kind, and is one-dimensional. A file, on the other hand, just sits there and waits for you to do something with it, offers little help, is entirely pas�sive, may consist of many parts of different kinds, and is at least two-dimensional. This dis�tinc�tion between the met�aphors of stream and file is not unlike Whorf’s presentation (1956:210) of the distinction between the two Hopi words for ‘water’. It turns out that the stream concept lends itself to convenient programming.

The result is that many Unix resources are designed around the concept of manipulating, mea�s�uring, analyzing, abstracting, modifying, sampling, linking, comparing, and otherwise foo�l�ing around with streams of text data, and since they share a common structure of conventions, they can be used together in surprisingly powerful ways. This is inherent in the way the simple spe�c�u�lum example above works; further examples may be found in Section 6 below.

Grammar

The Unix language family is inflected. This is not common (though not unknown,� ei�ther) in computing languages. There is, for instance, complex clausal syntax, in�clu�ding clitics, marked lexical classes, a case system, and a very powerful morphological system for para�d�ig�ma�tic matching called regular expressions.

Regular expressions permeate Unix. Originally developed by the logician Stephen Kleene (1956), they found their place as Type 3, the lowest, of the Chomsky Hierarchy (Chomsky 1963), where they are equi�v�alent to finite-state (“right-linear”) grammars, or finite automata. The most common type of reg�ular expression morphology is the use of “*” (the Kleene closure) to indicate “any string” in such con�texts as *.doc, meaning (in con�text) all files with names ending in the string “.doc”; this is the shell reg�ular expression dialect, the simplest but not the only one. The Unix program egrep, for in�stance, uses an elaborated ver�sion of regular expressions to search text files for lines containing strings matching a ex�pres�sion.

Suppose, for instance, one has a World Wide Web server, which stores a record of each “hit” (i.e, file request) on a separate line in a logfile with a long and unmnemonic name. Suppose further that one has decided to think of this file as weblog for convenience. Then one creates a shell variable, stores the name in it, and then uses weblog to refer to that file thereafter. This could be done by putting a line like the following in one’s .cshrc file:

weblog=/usr/etc/bin/httpd/log

Once set, this variable is available, and may be referred to, in any command. Unix makes a philosophically nice use/mention distinction here between the variable itself and the value of the variable. That is, weblog is the variable, while $weblog is its content, namely the string “/usr/etc/bin/httpd/log”.

To return to our example: this web log file, however it is named, or referenced, is filled with automatically-generated infor�mation from the Web server program, which runs in the background� The format of each line is invariable, since it’s generated automatically, and begins with the date in a particular format (e.g, “01/3/96”), followed by other information, terminating in the name of the file requested and the number of bytes served. Then the command:

egrep umich $weblog

will find and display every line in the file web.log containing the string “umich”.� There may be very many of these, and one may only want to know how many, so the output of egrep may be piped to wc -l�:

egrep umich $weblog | wc -l

which simply provides the number of lines found, instead of a listing of all of them. This works for more complex strings, too, though one is well-advised to use quotation marks to delimit the search string. If, for example, one wanted to count how many requests were made for a given file, say “FAQ”, on a given day; the command would be:

egrep ’01/23/98.*FAQ’ $weblog | wc -l�

Since “.” matches any character and “*” matches any number of the preceding character, “.*” comprises a regular expression idiom that mat�ches any string at all, and “01/23/98.*FAQ” thus matches any string� containing the date and the file name, in that order.

We alluded above to the analogs to the ablative (source) and dative (goal) cases, with ref�er�ence to the input or output of a command on the command line, i.e, whatever the user types af�ter the Unix prompt.� It is worth looking at the com�mand line in some detail, since it is the prin�cipal linguistic structure of Unix, analogous to the Sen�tence level in natural language. The ba�sic syntactic structure is

command [-switches] [arguments]

That is, verb, plus optional (marked) adverbials, plus optional noun phrases; some com�mand verbs are intransitive, some are transitive, some are bi�tran�sitive, and some vary in the number of arguments they take. These linguistic analogies are reasonably straightforward: virtually every Unix com�mand is, as the name suggests, an imperative verb, directing some action to be taken; the arguments, like nouns, refer to a person, place or thing, generally a user, a path or directory, or a string or file, respectively; and the switches, like adverbials, specify optional modes and manners in which the action is to be performed.

Com�mands are not always sim�plex; they may be conjoined or embedded, and there can be quite intricate flow of information from one to another, as we have seen. Concatenation of com�mands is straight�forward: to instruct Unix to perform several commands, one merely separates them with semi�colons; when the RETURN key is pressed, each is performed in order.

cd ~/News; trn; cd

changes the current directory to one’s own News directory (which is used by news readers like rn, trn, or tin), in�vokes trn, and returns to the home directory� when trn exits. These are coordinately con�joined clauses,� unlike the subordinate complement clauses produced by input/output redirection, where each successive command depends on a previous one.

Or, using the backquote conven�tion, whole commands may function as nouns, like complement clauses�, with the output of the complement command functioning as the argument of the matrix command. Quoting a command inside backquotes “`” runs that command in the background and then uses its output as the argument for the main command, so that:

finger `whoami`

first runs the whoami program, which returns the current user’s login name, then uses that string as the ar�gument for finger, which pro�vides information about a user from their name.

Unix is a multi-user, multi-tasking system. This means that several (on larger sys�tems, several hundred) people can simultaneously use the same machine, and each of them can, in the�ory, run several processes simultaneously.� With such complexity, it is obvious that there are a lot of people, places, and things to refer to, and Unix has a file and directory system that accom�mo�dates this. The basic unit in Unix, as in most computer systems, is the file, which is by de�fault a text file. Each file resides in some directory, and every user has their own home directory, usually named for their login ID.

Thus, if my login is jlawler, my home directory on a given Unix system might be /usr/jlawler, while hdry’s home directory would be /usr/hdry. A file named wordlist in my home directory has a full pathname of /usr/jlawler/wordlist, and it would be accessible from anywhere on the system with that name. Most Unix systems use a spe�cial referential convention to the effect that “~jlawler” means “jlawler’s home directory”, while “$HOME” is an indexical, referring to the current user’s (first person singular) home directory. Finally, one always has a current direc�tory, which is thought of (and referred to) in locative terms: i.e, one is in /usr/hdry and goes to it with the cd command: cd /usr/hdry. Files re�ferred to without a pathname, i.e, by the name of the file alone (e.g, wordlist) are interpreted as being in the current directory by default. Thus, for any�one who is in my home directory, “wordlist” is sufficient; for someone in /usr/hdry, “~jlawler/wordlist” is necessary; and I can always refer to it as $HOME/wordlist, no matter what directory I’m in.

Directories may contain other directories, and references to them are simply concatenated with the direc�tory separator slash “/”. A file wordlist that was in a subdirectory lists under a subdirectory English under my home directory would have a fully-specified pathname of /usr/jlawler/English/lists/wordlist, and other users could reference it this way, or as ~jlawler/English/lists/wordlist, etc. The concept of hierarchical directo�ries originated in Unix, but it has spread to most modern systems. Users of DOS will be familiar with this convention, although DOS uses backslash “\” instead of slash as a directory �separa�tor; in Macintosh usage, directories are called “folders”, and colon “:” is used in pathnames.

Unix filenames are normal ASCII strings of varying lengths�, and may contain any alpha�numeric character, and a number of non-alphanumerics. They may (but need not, except for spe�cial purposes) end with an extension of a period followed by a short string denoting the file type. Thus, C program code files end in .c, HTML files accessed by Web browsers end in .html, and compressed tar archive files end in .tar.Z. Some programs require special extensions on filenames, but most Unix tools do not, though they are often defaults.

In natural languages, imperative forms are almost al�ways regular, frequently based on sim�ple verb roots unless elaborated by a politeness system. In deal�ing with machines politeness is not an issue, hence the lack of verbal inflection per se in Unix. There is, however, an elaborate cli�tic system, called switches.� By way of example, let us examine the common Unix command ls, which displays file names and information, like the DIR command in DOS. The online manual entry for ls (the Unix command to display it is man ls) starts this way:

LS(1) UNIX Programmer’s Manual

NAME

 ls - list contents of directory

SYNOPSIS

 ls [-acdfgilqrstu1ACLFR] name

	Figure 4.	Top of man page for ls command:�	 	man ls | head

The heading shows that the ls command is in part 1 of the Manual (most ordinary com�mands are there); the next part gives its name (in lower case) and its purpose. The “synopsis” then gives all the possible switches, each a single character, that it may take. The square brackets sig�nal that they are optional; the hyphen character precedes any switch markers, which may be con�catenated, in any order. The rest of the man page then details the operation of ls; in particu�lar, the operation of ls with each switch is discussed separately.

For instance, here is what it says about the -t, -s, and -r switches:

-t	Sort by time modified (latest first) instead of by name.

-s	Give size in kilobytes of each file.

-r	Reverse the order of sort to get reverse alphabetic or�	oldest first as appropriate.

	Figure 5.	From man page for ls command:�		effects of -t, -s, and -r switches.

This means that ls -rst� will present the names of the files in the di�rec�tory name,� with their sizes, sorted by time, most recently modified files last. Each of the other let�ter switches listed in the Synopsis does something different; further, what each does is context-sen�sitive, in that it may vary if used with some other switch, like the com�bination of -r with -t, which changes the sort order from reverse alphabetic to reverse temporal.

ls has 18 switches in this dialect; which is a larger degree of modification than most Unix com�mands have. Each command has a unique set of switches, however, most of which are only in�frequently needed. The syntax ranges from extremely simple to rather complex. Below are some syntactic synopses of other Unix commands. Underlining indicates variables to be supplied by the user, and square brackets op�tional elements – switches separately bracketed require sep�a�rate “-” prefixes. Vertical bar “|”, like linguists’ curly brackets, requires a choice among ele�m�ents.

	rev:	reverse the order of characters in each line	rev [file]�	cp:	copy files	cp [-ip] file1 file2�	mv:	move or rename files	mv [-i] [-f] [-] file1 file2

	head/tail:	give first/last few lines of a file	head/tail [-count] [file]

	mail:	send and receive mail	mail [-v] [-i] [-n] [-s subject] [user ...]

	uniq:	remove or report adjacent duplicate lines	uniq [-cdu [+|-n] [inputfile [outputfile]]

	diff:	display line differences between files	diff [-bitw] [-c [#] | -e | -f | -n | -h] file1 file2

	spell:	report spelling errors	spell	[-blvx] [-d hlist] [-h spellhist] [-s hstop] [+localfile] [file]

	Figure 6.	Synopses and syntax of selected Unix commands.

In each of these, the switches may be expected to have a different meaning. All this might seem a large burden to place on the user, and it would indeed be excessive, were it not for the facts that:

�SYMBOL 183 \f "Symbol" \s 10 \h�	a complete list with glosses is always available via the man command

�SYMBOL 183 \f "Symbol" \s 10 \h�	some, at least, of the switches are mnemonic (in English): -time, -reverse, -size

�SYMBOL 183 \f "Symbol" \s 10 \h�	one need never learn any switch more than once, since any useful configuration can be 	made into an alias or script with a name chosen by (and presumably significant to) 	the user; thus ls -rts can be renamed, say, reversedate with the command

	alias reversedate ls -rts

Any command, or sequence of commands, can be given a name, thus making it into an idiom, or a little pro�gram. This facility is provided by the Unix shell, the tool that coordinates the other tools by in�terpreting commands. There are two principal shells, and each provides a dif�fer�ent facility for com�mand formation. csh, the “C-shell”,� provides aliases; it is principally used interactively, where it identifies itself with a “%” prompt. sh, the “Bourne shell”,� is used mostly to interpret files containing shell scripts; it has fewer interactive features, but when it is being used in�ter�ac�t�ively, it identifies itself with a “$” prompt.�

The command reversedate could be either an alias (as in the example above), or a shell script. Generally, simple com�mands like this are more likely to be made into aliases, since the process is easier, and doesn’t involve creating and activating a file. Of course, to make an alias permanent, it is nec�es�sary to record it; each csh user has a file called .cshrc� that may be customized in a number of ways, including a list of their aliases. One of the first aliases some us�ers put in .cshrc is some�thing like the following:

alias define 'edit $HOME/aliases;unalias *;alias -r $HOME/aliases�

which allows them to define new aliases on the fly.� A good rule to follow is that any command one notices oneself typing more than a few times should become an alias with a mnemonic name; and to keep track of these, it is also useful to have a few aliases whose purpose is to remind oneself of one’s previous aliases. The Unix tool which is helpful here; which define, for instance, will return the following in�formation:�

	define - aliased to: edit $HOME/aliases;unalias *;source $HOME/aliases

egrep can be used to advantage as well, to refresh one’s memory about previous lexicography. Suppose you have several aliases for ls with various switches, but you don’t recall all of them; the following command will then print each line in .cshrc containing the string “ls ”.�

% definitions 'ls '

alias dates 'ls -sACFt | more'

alias dir 'ls -alF'

alias lf 'ls -sF'

alias ll 'ls -l'

alias lc 'ls -lc'

alias whichls 'ls -l `which \!*`'

	Figure 7.	Operation of the definitions alias.

by means of the following alias:

	alias definitions "egrep \!* $HOME/aliases "

 “\!*” is the C-shell code for a command parameter, i.e, whatever appears on the command line af�ter the alias; in this example, it is translated by the shell into the string “ls ” (note the space), and passed on to egrep, which dutifully searches $HOME/aliases � for lines containing this string and prints the result.

Of the various aliases above, dates shows multi-column output sorted by time, oldest last, and pipes the output to a file view�er that shows only a screen at a time; this is useful for dir�ectories with a large number of files. ll and lc both produce a “long directory”, with all details of each file printed on a separate line; lc is sorted by time of last edit, most recent first. The last alias, whichls, uses the backquote convention; which finds executable programs, scripts, or aliases any�where in the user’s path, but it returns only the name and location, and not the size, date, or any other in�for�mation. If one wants more information, one can then use ls to find it; but it’s often con�ve�n�ient to combine the steps, as here.

By contrast with an alias, a shell script:

�SYMBOL 183 \f "Symbol" \s 10 \h�	is interpreted by the Bourne shell sh (aliases are interpreted by csh, the �C-shell; this means that aliases and scripts use somewhat different conventions)

�SYMBOL 183 \f "Symbol" \s 10 \h�	consists of a file and resides on disk, like other Unix programs (aliases are loaded from a file when csh starts at login and are thus in-memory commands)

�SYMBOL 183 \f "Symbol" \s 10 \h�	is generally longer and more complex than an alias, which is usually a short �se�quence of commands or a mere synonym for a single command

As an example of a shell script, consider a problem one often encounters: making a simple change in multiple files. This could be done individually with an editor, making the change by hand in one file, loading the next file and making it by hand again, etc. But this is not only wasteful of time but also prone to error, and Unix provides better facilities for such tasks. Sup�pose the files in question are all HTML files in a single directory on a Web server, and that what needs to be done is to change a URL link that may occur several times in each file (or may not occur at all) to a new address, because the server that the URL points to has been re�named (this particular task that is likely to be with us for some time).

A two-step process will serve best here: first, a shell script (call it loopedit) to loop over the files and edit each one with the same editing commands, and a separate file (call it editcmds) of editing commands. This has the benefit of being reusable, since subsequent edit�ing changes can be made with the same script merely by changing the contents of editcmds. The Unix cat� tool will print any file on the screen, so we can see the files:

% cat loopedit

#!sh

for i in *.html

 do

 ex - $i < editcmds

 done

	Figure 8a.	The loopedit script, with commands in editcmds file (Fig. 8b).

The first line invokes the sh shell to interpret the script (one gets to specify the language and dialect). The next line (a “for” statement) instructs the shell to carry out the line(s)� between the fol�lowing “do” and “done” markers once for each file ending in “.html”,� just as if it were typed at the keyboard. At each successive iteration of the command, the shell variable “i” is to be set to the name of each successive file in the set of those ending in “.html”. The fourth line is the com�mand itself; it runs the ex line editor (using ex’s silent switch “-” that tells ex not to print its us�ual messages on the standard output for each file, unnecessary with multiple files), and the name of each file (referenced as the value of i, or $i) as its argument. ex is further instructed by the in�put redirection (ablative) marker “<” following the argument to take its next input – the com�mands themselves – from the file editcmds.

The contents of editcmds can be similarly displayed:

% cat editcmds

g/www.umich.edu\/\~/s//www-personal.umich.edu\/\~/g

wq

	Figure 8b.	The editcmds file, input to ex in the loopedit script (Fig 8a).

There are only two lines necessary; the first makes the changes, and the second saves (“writes”) the file and quits. The second line is trivial, but the first is fairly complex.� There are several technical wrinkles, due to peculiarities of ex commands and of URL syntax, that render it more complex than usual; this makes it a good example of a number of things, and worth our while parsing out character-by-character below.

First, let us examine the precise change to be made. URLs begin with the address of the server to be contacted; in the case of the University of Michigan, there are several, all beginning with “www.”. As the Web has grown, it has become necessary for some Web pages to be moved to different servers to equalize the load. In particular, at the University of Michigan, personal Web home pages, which are named using a tilde convention similar to the Unix home directory convention, have had to be moved from the server having the address “www.umich.edu” to a special server for such pages only, with the address “www-personal.umich.edu”. Thus Eric Rabkin’s home page, which used to have the URL “www.umich.edu/~esrabkin/”, can now be found at the URL “www-personal.umich.edu/~esrabkin/”, and this change must be made for thousands of URLs in many Web pages. The change should only be made to personal pages, however; other (e.g, departmental) pages, which are not named with the tilde convention, remain on the original server and retain the “www.umich.edu” address.

We therefore need to search for all lines in a file that contain the URL address string “www.umich.edu/~”, and to change each occurrence of this string on each of these lines to �“www-personal.umich.edu/~”. That is what the first line does. The “s” (for “substitute”) command in ex has the syntax s/re1/re2/, where re1 and re2 are regular expressions; it substitutes re2 for re1, and is thus a variant of the Structural Description : Structural Change transformation notation that generative linguists put up with for over a dec�ade. s//re/ is a zero pronominal reference, and substitutes re for whatever the last search string has been; in this case, that has already been specified by the preceding search (the slash-delimited regular expression beginning the line). In the event of a search failure, the “s” command will not execute. However, this particular command has a special twist: slash “/” and tilde “~” are themselves both meaning�ful characters to ex, and thus cannot be searched for directly.

Slash is used to delimit search strings,� and in order to search for slash itself in a string, or for strings con�taining it, it must be escaped with a backslash “\” literal prefix. I.e, “\” quotes the next charac�ter literally, so that the string “\/” means “the character ‘/’ ”; the slash will not be interpreted by ex as a string de�li�m�iter. Sim�i�larly, unescaped tilde implicitly refers to the last re�placement string (re2) used in a previous “s” com�mand (just as un�escaped ampersand “&” refers to the search string (re1) of the current “s” command), and to the emp�ty string if there have been no previous “s” commands, which will be the case in this script. So the actual string we must instruct ex to search for is “www.umich.edu\/\~”, with both slash and tilde escaped,� and the replacement string is “www-personal.umich.edu\/\~”.

The two “g”, for “general”, commands, one at the beginning and one at the end, refer to two different contexts. The initial “g” instructs ex to find all lines in the file with an occurrence of the following search string, and to execute the command following on those lines where it is found, while the final “g” refers only to the (line-oriented) “s” command, and instructs ex to perform all possible substitutions on the indicated line; this covers the case where there is more than one occurrence of the string on the line. Without the suffixal “g”, the “s” command could only be executed once on any line.

g	“general”	find all occurrences of the following search string in the file

 /	string delimiter	begin search string; find a line containing the

	following string and make it the current line

 www.umich.edu\/\~	string to be searched for, including escaped

 	(i.e, literal) slash / and tilde ~ characters

 /	string delimiter	end search string

s	“substitute”	replace first following string with second once on current line

 /	string delimiter	begin search string

	(nothing)	use last previous search string by default

 /	string delimiter	end search string, begin replacement string

 www-personal.umich.edu\/\~	replacement string, including escaped

 	(i.e, literal) slash / and tilde ~ characters

 /	string delimiter	end replacement string

g	“general”	execute the preceding “s” command as often as possible on a line

	Figure 8c.	Parse of the edit command in editcmds file (Fig 8b)�		interpreted by ex in the loopedit script (Fig 8a).

With these files in place, the only thing remaining is to activate loopedit as an execu�table (i.e, program) file with the chmod� command. From then on it works the same as any Unix program. One need hardly add that, with several hundred Unix tools available to be used, singly or together, plus dozens of specialized sublanguages for instructing them, shell scripts offer unlimited possibilities for automated text processing to every Unix user. For instance, the LINGUIST List is edited, distributed, archived, abstracted, and put on the Web via a large suite of Unix scripts that depend on tools like the ones discussed in this chapter.

Editing and Formatting

The Unix toolbox always includes an editor, actually several editors, of several different kinds. Editors are programs that create and change the contents of ASCII files. They may do many other things as well, and some, for instance emacs, can become an entire environment. An editor is a significant part – the part that connects keyboard, screen, and disk – of the usual mi�crocomputer word-processing programs; the usual metaphor is a typewriter, without paper, but with a memory. A wordprocessor is a large complex program with many capabilities; the usual metaphor is a typewriter that not only has paper, but also a print shop, an art studio, a type foun�dry, and a reference library. Wordprocessors are used to produce actual printed pages, while an editor need only fool around with bits and bytes, not fonts and footnotes. An editor is thus usu�ally much smaller and faster, because it is a tool that only does one thing and doesn’t try to do others.

They are also especially useful in Unix, because Unix was originally invented by pro�grammers for programmers, and its editors, though mostly used for ordinary writing, are designed to be especially useful for programmers. In order to make a shell script or save an alias, for in�stance, one must use an editor. Which one? That is a semi-religious matter for many. The choices include:

	�SYMBOL 183 \f "Symbol" \s 10 \h�	pico, the screen editor that is a part of the pine e-mail package. Many people have found it easy to use, and the editor is available separately from email. Furthermore, �pi�co’s key commands are a subset of the standard key commands for:

	�SYMBOL 183 \f "Symbol" \s 10 \h�	emacs, the most powerful and flexible editor in the computer world. It can be found on most Unix systems in academia, though not always in business. It is the product of the Free Software Foundation and must be given away free. Though it is not simple to install, nor to learn completely, it is thoroughly programmable (in Lisp) and can do al�most anything with ASCII text. emacs’ main competitor is:

	�SYMBOL 183 \f "Symbol" \s 10 \h�	vi, universally pronounced /viyáy/, which, growing out of a short tradition of line edit�ing, was the first screen editor available on Unix, and, as part of the standard Unix dis�tribution, may be found on every Unix system, along with its relatives:

	�SYMBOL 183 \f "Symbol" \s 10 \h�	ex and edit, essentially command-line versions of vi (they become vi with the "v" command); and ed, the first Unix line editor, still a functional tool within its limitations.

All of them work, but they all work differently. In this chapter, I use the ex line editor, both as a least common denominator, and because it is the editor I use myself by choice for most simple file editing tasks like adding or modifying aliases, mail names, text Web pages, and writing small scripts. It is fast and convenient for these tasks, and can easily be automated. Thus the details of the editing in the transcriptions that follow are independent of the rest, in that the editing could have been done visually.

But it’s irrelevant, from the standpoint of the Software Tools philosophy, or of Unix, which tools you use, as long as they work, because all of the tools work together. There is thus a wide choice of programs available for virtually any task, and editors are no ex�ception. Indeed, editors are so important to programmers that they are constantly improving them, often on their own time, for glory; and since programming glory involves efficiency and power, among other things, this leads to some very interesting tools.

There is an important class of word-processing tool program, called a text formatter, which is also usually part of a wordprocessor, but may be used as a separate tool in combination with an editor. Examples are TeX and LaTeX, programs used by many scientists to produce technical text, and the Unix programs roff (for ‘run off’) and troff (for ‘typesetter runoff’), all of which implement special printing instructions from special tags or commands embedded in a text file. Formatters and embedded commands are common with file structures that follow SGML or HTML, or some equivalent markup scheme, like Web browsers (see chapters 1, 4, and 6 in this book for further discussion of markup, TeX, and SGML). In all of these, the stream and pipe metaphors of information flow control via tool programs can easily be discerned. Separate formatter programs are not as widely used in ordinary writing as previously, since the locus of most text construction has moved to microcomputers with full-featured wordprocessing programs with built-in formatting; but they are still a common type of program, one of the larger class called filters.

Filters

As mentioned above, a filter program is one that takes input (prototypically textual input) from some source, performs some regular transformation on it, and sends the resulting output to some terminus. This may be sequential, like the speculum example, or interactive, like a Web browser interpreting HTML code; but frequently enough filters employ regular expressions, used in special filter languages, to specify their transformation.

Regular expressions are far more powerful than simple string search examples would sug�gest. Besides “.” and “*”, there are a host of other special inflections with special senses, as in any synthetic morphology:

�SYMBOL 183 \f "Symbol" \s 10 \h�	“?” means 0 or 1 of the preceding character, so “s?” means that “s” is optional

�SYMBOL 183 \f "Symbol" \s 10 \h�	“+” means a string of one or more of the preceding characters (“*” is zero or more)

�SYMBOL 183 \f "Symbol" \s 10 \h�	“|” indicates alternation, so “to(day|morrow)” matches either today or tomorrow

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[A-Z]” matches any single character from the ASCII range between “A” and “Z”

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[^AUZ]” matches any character except “A”, “U”, and “Z”

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[^A-Z]” matches any character except an uppercase letter, so

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[A-Za-z0-9]” matches any single alphanumeric character, while

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[A-Za-z0-9]*” matches any string consisting only of alphanumerics, and

�SYMBOL 183 \f "Symbol" \s 10 \h�	“[^0-9]*” matches any any string that does not contain numeric characters

�SYMBOL 183 \f "Symbol" \s 10 \h�	“$” means the end of a line, and “^” means its beginning, so “^$” matches an empty line.

	Figure 9a.	Simple examples of regular expressions and the strings they match.

Special characters intended to be used literally, rather than interpreted like this,� are pre�ce�ded by “\”, thus “\. ” matches a period with two spaces afterward, and “\\” matches a single (literal) back�slash.

Some other examples of regular expressions, all working with egrep (and all delimited with ’quotes’):

’ .*is?tic(|al(|ly) ’	any word ending (note the spaces) in -itic, -istic,

		-itical, -istical, -itically, or -istically

’ [A-Z][a-z]* ’	any Capitalized word (note the spaces)

’ [A-Z][a-z]*[A-Z][a-z]+ ’	any CapiTalized word containing one other CapiTal

’^[^]*$ ’	a complete line containing no spaces (* matches empty line, + doesn’t)

’^[A-Z].*\.$ ’	a complete line beginning with a Capital and ending with a period.

’ spr?[^\.?,:;!]*[\.?,:;!]’	any word beginning with sp- or spr-; �this expression specifies that the string must begin with a space, and may not contain pe�riod, question mark, comma, colon, semicolon, or bang, while it must terminate with one of them, or with space, making it suitable for searching in normally punctuated text.

’[A-Z][A-Za-z]* [A-Za-z]*: ?([Tt]he|[aA]n?) [A-Z]?[a-z]* of .*’�	a specification for certain styles of academic title like

		Regular Titles: An analysis of technical paper nomenclature.

	Figure 9b.	Complex examples of regular expressions and the strings they match.

Besides egrep, many other Unix tools can use these regular expressions. The text edi�tors ed, ex, vi, and emacs, for example, can perform very complex string manipulations based on regular expressions. In addition, the text filter languages sed,� awk,� and perl� make ex�tensive use of regular expressions. sed, from “stream editor”, is the simplest filter tool. It can do the same things as ex, but operates on the entire text stream with prede�t�er�mined instructions. It is useful for repetitive editing tasks; since these are character-based editors, sed is best at charac�ter-level manipulations. awk is a more complex language, based on the concept of the word in�stead of the character, but still oriented toward sequential operation on each line in a filter opera�tion. awk is somewhat more like a conventional programming language, and one can write quite complex programs in it, but is simple enough for useful short programs to be written on the fly. It works best for formatting repetitive and relatively predictable text data. perl is a general-pur�pose programming language oriented toward text handling, which is very widely used on the In�ternet, especially the Web. It is very powerful and efficient, and, though relatively easy to learn, is more complex than awk, and does not presuppose the filter metaphor so literally.

Unix resources for users

There are hundreds, probably thousands, of books on Unix in press. Since it has not changed in its basics since the 1970s, even books published a long time ago can still be useful. Rather than attempt to survey this vast and variable market, I will point to a few standard references (many of which can be found in used book stores).

I have already mentioned the various books by Brian Kernighan & assorted co-authors; they remain standard, even though their examples show signs of aging in some environments. The single best source of printed information (both on Unix, and on regular expressions and their use in filters as well) for sophisticated beginners remains the first four chapters of Kernighan and Pike’s classic (1984) The UNIX Programming Environment, which treat much the same topics as this chapter. This is pretty condensed stuff, but admirably clear; Kernighan is not only the k in awk, and one of the creators of UNIX, but also one of the best writers in information science.

For those curious about how software is designed and developed, Brooks (1995) explains a great deal about the mistakes that can be made and the lessons that have been learned. For the historically-inclined, Salus (1994) covers the territory very well. Raymond (1996) is the latest installment of an online lexicographic project called the Jargon File; it contains a lot of good linguistics and ethnography, and some wonderful metaphors. Other books of historic and ethnographic interest include Kidder (1981), Levy (1984), Libes (1989), and Stoll (1990).

Regular expressions are covered in every book on Unix. They are especially well-treated in books on filter languages. A good source for all of these is the set of books from O’Reilly and Associates (the ones with the strange beasts on the cover); they publish good manuals on sed and awk, regular expressions, Perl, and many other topics, centered on Unix and the Internet.

When evaluating a Unix book for reference purposes, look for a thick book with a good index and multiple appendices. Like good linguistics, it should give copious examples of everything, and say what each is an example of. A good check for the index (a vital part to any reference grammar) is to see if it’s easy to find out how to refer to command-line arguments in a C-shell alias – you should be able to find the arcane formula (\!* or \\!*) without looking hard. Check the index also for mentions of useful commands like sed, ls, head, sort, uniq, rev, and awk. Check the table of contents for a separate section on regular expressions near the beginning of the book; there should also be discussions (ideally, entire sections) on aliases and customization, as well as shell programming in both the Bourne shell and the C-shell. Both vi and emacs should be treated in detail, with examples, and commands for both should be listed in detail.

Marketing hype about how the book makes Unix easy, even for those unwilling to attend to details, is extremely suspect, just as it would be if it were encountered on a linguistics book; one needs reference grammars as well as phrasebooks.

For technical reference, the official source is the Unix edition of the Bell System Technical Journal (1979, 1987), and Bell Laboratory's Unix Programmer's Manual, which is largely a collection of standard man pages. (The online man system always provides the most up-to-date and deictically-anchored – and terse – Unix information available). Stallman (1993) is the standard reference on the editor emacs, by its designer and author; the result is comprehensive, though as always the author of a program is not necessarily the best possible author of its manual. There are a vast number of Web and Usenet resources - see the online appendix at	http://www.lsa.umich.edu/ling/jlawler/routledge/unix.html

�	Unix is a registered trademark (at press time, it was a trademark of Santa Cruz Operation, Inc.) whose prove�n�ance and ownership, along with the traditions and variations of its use, is part of its history as a language, in much the same way that, say, Indo-Germanic is a term with roots in the history of linguistics, and of the study of the Indo-European language family. This point having been made, we do not hereinafter use the “™” symbol with the word Unix. For the etymology of Unix, see Salus (1994).

�	All of these proper names are also registered trademarks; hereinafter we do not distinguish trademarks from or�d�inary proper nouns.

�	My models in this sketch, to the extent practicable, are the excellent language sketches in Comrie, ed. (1987).

�	This has recently changed with the licensing of the Mac OS to other manufacturers.

�	This team did not rest on its Unix laurels. They have been working on a successor, and it is now being released under the whimsical name http://plan9.att.com/plan9/index.html Plan 9.

�	Technically, this is a pervasive metaphor theme, with accompanying social movement, rather than a phi�losophy per se. Software Tools and Unix predate modern metaphor research and terminology by about a dec�ade.

�	So-called because it was the successor of the B programming language.

�	Kernighan and Plauger: The Elements of Programming Style, Software Tools (both 1976), and Software Tools in Pascal (1981); Kernighan and Ritchie: The C Programming Language (1978); Kernighan and Pike: The Unix Programming Environment (1984).

�	See sec. 6 of this chapter on filters for an example.

�	See sec. 3 of this chapter for further discussion of the stream metaphor. Note that pipe and filter are usefully coherent with it.

�	The Standard Input (and Output) are abstract streams that are associated with every Unix program by the OS. They are the ablative source (and dative goal) of any fil�ter program. The unmarked (default) Standard Input is the keyboard (and the unmarked Standard Output is the screen) unless they are redirected; i.e, unless overtly referenced with a pipe “|”, as in �egrep ’umich.edu’ $web.log | wc -l �or a case marker (<, >), as in� mail jim@somewhere.edu < job.talk

�	Besides being a genuine acronym, bit is also a remarkably apposite English name for the smallest possible unit of information.

�	/'æski/ in American English; an acronym of American Standard Code for Information Interchange.

�	This is certainly as true (and mnemonically as useful) as the rough equivalences of one meter with one English yard or of one liter with one English quart.

�	This byte is also expressible as number 6A in Hexadecimal (base 16) notation. A is a digit in Hexadecimal no�t�ation, representing the number after 9, which is called ten in Decimal nota�tion. The capital letters A–F are single Hexadecimal digits representing Decimal 10 through 15, respectively; Decimal 16 is written 10 in Hex�a�decimal. It is customary to add H after writing a Hexadecimal number (e.g, 6AH) to indicate the base; but there are other conventions as well, such as $6A, with sources in a number of languages.

�	But not all. This is the source of much frustration (see next note), and explains why communication programs like telnet include provisions to use either BS or DEL as the destructive backspace character.

�	With one exception. No. 127, DEL, is at the very end of the chart. This is binary “1111111” and represents an original convention in (7-hole) paper tape, an early input medium. If one made a mistake in punching the tape, one simply punched everything out and it was skipped. This later became a standard in the early Unix community for keyboarding; thus the Back Space key on many workstation keyboards produces no. 127, DEL (^? or Delete). This has not been completely integrated with the other early convention of using no. 8, BS (^H or Back Space), that per�sists in most microcomputer applications.

�	Again, early conventions have resulted in variation. In DOS and Windows ASCII files, each text line is termi�nated by a cluster consisting of no. 13, CR (^M, or Carriage Return, which originally returned the teletype print head to the left margin without advancing a line), immediately followed by no. 10, LF. In Mac ASCII files, the standard newline character that terminates lines is CR alone, and in Unix it is LF alone.

�	Or roughly 60 Kilobytes (KB). The kilo- prefix, normally denoting 1000, refers in computing contexts to 1024, which is 210. Similarly, mega- is 1,048,576 (220), rather than 1,000,000. While this is not standard metric, it rarely causes confusion.

�	One important qualification must be made here. Text files in word-processing programs (on Unix or elsewhere) are not Standard ASCII files, and rarely mark individual lines with anything; on the contrary, most use newline to end paragraphs only, preferring to reformat lines on the fly. In fact, each wordprocessor has its own proprietary file format, in which control characters and High ASCII characters are used to code information peculiar to the particular program that writes (and expects to read) the file. In general, one may assume that any two wordprocessors’ files are incompatible unless special steps, like format translation or translation to a common interlanguage, such as Rich Text Format (RTF), have been taken. Virtually all wordprocessors, however, have the capability to save text as a standard ASCII file, in some cases with or without line breaks specified, and this format is universally compatible.

�	The apl programming language is an example of a polysynthetic computer language, for instance.

�	The usual metaphor is that programs like those that serve files on the Web (httpd), respond with personal information on the finger command (fingerd), or make ftp connections (ftpd), etc, are d(a)emons, whence the suffixal -d in their names. Daemons are invisible slavey programs that run only in the background, checking every so often to see if what they’re looking for has come in, responding to it if it is, and going back to sleep. This metaphor refers to Selfridge’s (1958) “Pandemonium” model of perception, which is fairly close to the way many net programs work.

�	Note that the argument immediately after egrep on the command line is interpreted as a regular expression, while the one following that is interpreted as a file name; we have here a system of subcategorization that specifies the lexical class and morphological properties of verbal case roles. The string to be matched by egrep need not be quoted (though it may be). However, one is well advised to ’single-quote’ complex search strings containing space and other special characters, to avoid unexpected misinterpretations.

�	From “word count”; wc counts lines, words, and characters; the optional -l, -w, and -c switches say which.

�	It is also possible to have Unix supply the current date in the appropriate format as the search string (thus making the command indexical), by means of the backquote convention (see below):�egrep `date +%d/%h/19%y` $weblog | wc -l

�	As a matter of fact, it will match the longest such string in the line, if there is any ambiguity in the match.

�	The prompt is usually “%” (possibly with other information, like the name of the machine), and sometimes “$”.

�	cd (from “change directory”) changes the directory location to the one specified; when issued without an argument, it defaults to the user’s home directory.

�	With the usual Western “narrative presupposition” to the effect that the conjuncts occur in the order they are mentioned. In this case, of course, it is not so much a presupposition as a performative.

� 	In particular, they are very reminiscent of conjunctive embedded questions of the form �	I know who Bill invited�where in fact what I know is the answer to the question “Who did Bill invite?”.

�	Any Unix command, for instance, can be run “in the background”, i.e, simultaneously, by suffixing “&” to it.

�	The length of filenames was one of the major differences between BSD Unix and System V; Berkeley filenames could generally be longer, and this caused many problems in adapting programs.

�	Sometimes called options. These are generally adverbial in nature.

�	Or the command ls -r -st, or ls -rs -t, or ls -t -r -s, etc. Switches need not be concatenated.

�	In case name is not specified (as it isn’t in the command in the previous line), ls assumes the current directory is intended. This is an exam�ple of the Software Tools philosophy in action; instead of requiring literal compliance with the syntax, make the defaults useful.

�	So-called because it incorporates many features of the C programming language.

�	Named after its inventor. sh was an earlier shell, superseded for interactive use by csh; however, its simplic�ity has made it the default choice for shell programming.

�	Others include ksh, the “Korn Shell”, which combines features of sh and csh, and tcsh, an improved csh.

�	The period prefix is obligatory; most Unix programs use such dot files containing customizations or prefer�ences. The ls command does not display dot files unless instructed to with the -a switch.

�	The three successive commands separated by semicolons respectively: (a) edit the user’s aliases file, presumably to insert a new alias; (b) remove all current aliases; (c) reload the presumably modified aliases.

�	Provided this is where their aliases are; the following command should be the last line in the dot file .cshrc:�alias -r $HOME/aliases This will load the alias file when the shell starts, e.g, at login.

�	Besides aliases, which will also locate any executable files (shell scripts or programs) matching a name that are in the user’s path. As such, a command like which foobar answers the question: “If I type foobar, will anything happen?”.

�	Note the final space, to restrict the match to commands. Quotes are used to disambiguate strings whenever necessary, as with spaces and special characters, but they are not necessary with simple strings. There is a principled pragmatic difference between single and double quotes in Unix.

�	Each user’s dot and customization files are located in their home directory, to which cd returns when invoked without arguments, and which is contained in the system variable $HOME.

�	From “catenate”, since the tool will concatenate multiple files named as arguments.

�	There can be many lines between do and done, but we need only one for such a simple task.

�	Thus, by default, lying in the current directory; this also applies to editcmds. This means that editcmds should be in the same directory as the files to be edited, and that that should be the current directory. loopedit, however, need not be there, since as an executable script it can be located anywhere in the user’s path (the series of directories searched by the shell to find programs to be executed). ex itself resides in a system directory, where it is accessible to (but not modifiable by) ordinary users.

�	And in fact took a couple of tries to get right. However, once debugged it can be saved and reused indefinitely, a major feature of the Software Tools philosophy.

�	As in this command. Although any character may function as a string delimiter in an “s” command, slash is most common. Using a different character for the “s” command would eliminate one pair of backslashes in this command. However, slash is the canonical delimiter for searching and may not be changed in that sense.

�	Actually, we could do without the escaped slash in the search string. Since any string containing “www.umich.edu” followed by one character followed by a tilde is acceptable, we could simply use a period, which will match any character, instead of an escaped slash in the search string: “www.umich.edu.\~”. Indeed, the periods in “www.umich.edu” will match any character, too; the fact that they are intended to match literal periods is entirely coincidental. However, in the replacement string, period is not interpreted, while slash is, so the escaped slash is necessary there.

�	From “change modifiers”, a reference to the executability of the file. The command that activates loopedit as a program is chmod u+x loopedit, which means that the user adds executability to the file’s properties. If this seems difficult to remember (and it is hardly intuitive), an alias renders it more memorable:�alias activate chmod u+x

�	There are other possible interpretations; for instance, the ex editor has a special meaning for slash “/”.�See above for examples.

�	From “stream editor”. sed can do the same things as ed, but operates on the entire text stream with prede�t�er�mined instructions, instead of interactively. It is useful for repetitive editing tasks.

�	An acronym of “Aho, Weinberg, Kernighan”, the authors of the program. awk is more powerful than sed, and is designed specifically for use as a text filter, especially for repetitively-formatted files.

�	An acronym of “Practical Extraction and Report Language”. Perl is a full programming language, oriented towards manipulating large texts. It is widely used on the Web for CGI scripts; a very simple example is the Chomskybot , whose URL is: http://stick.us.itd.umich.edu/cgi-bin/chomsky.pl�the URL of its Perl script is: http://www.lsa.umich.edu/ling/jlawler/fogcode.html�I do not consider Perl much further here, except to point out ways of learning it easily, by automatic translation.

Using Computers in Linguistics

Hockey: Texts

� PAGE �222�

� PAGE �223�

Using Computers in Linguistics

Lawler: Unix

� PAGE �224�

� PAGE �268�

�PAGE \# "'Page: '#'�'" �Page: 62���

I don’t understand this�PAGE \# "'Page: '#'�'" �Page: 62��

�PAGE \# "'Page: '#'�'" �Page: 62���

�PAGE \# "'Page: '#'�'" �Page: 63��changed

�PAGE \# "'Page: '#'�'" �Page: 65���

I don’t follow this, I’m afraid. How did C come up. How does the fact that C is widely used

show that the software tools philosophy is successful??

�PAGE \# "'Page: '#'�'" �Page: 70��� I’m afraid you’ve lost me somewhere in the ASCII, binarry, hex numbers. Do we need all this on ASCII in order to say that Unix is case-sensitive?

