

Using Computers in Linguistics: A Practical Guide

Edited By

John Lawler

University of Michigan

and

Helen Aristar Dry

Eastern Michigan University�

This book is dedicated to the editors’ parents:

Ida Maye Smith Dry

Harold Franklin Dry

Agnita Margaret Engler Lawler

and

to the memory of

Edward Michael Lawler (1914-54),

who would have liked both computing and linguistics.

�
Table of Contents

� TOC \o "1-3" �� TOC \o "1-3" \n �Using Computers in Linguistics: A Practical Guide

John Lawler and Helen Aristar Dry

About the Authors

Introduction

John Lawler and Helen Aristar Dry

1. Computing and linguistics

2. Needs

3. Purpose and provenance of the book

4. Overview of the chapters

5. Conclusion

1. The Nature of Linguistic Data and the Requirements of a Computing Environment for Linguistic Research

Gary Simons

1. The multilingual nature of linguistic data

2. The sequential nature of linguistic data

3. The hierarchical nature of linguistic data

4. The multidimensional nature of linguistic data

5. The highly integrated nature of linguistic data

6. The separation of information from format

7. Toward a computing environment for linguistic research

�

�� TOC \o "1-3" \n �� TOC \o "1-3" \n �2. The Internet: An Introduction

Helen Aristar Dry and Anthony Rodrigues Aristar

1. Introduction

2. What is the Internet

2.1. IP

2.2. Domain names

2.3. Routers

2.4. TCP

2.5. Clients and Servers

3. Basic Internet Functions

3.1. Electronic Mail

3.2. FTP

3.3. Telnet

4. Finding Information on the Internet

4.1. Archie

4.2. Gopher

4.3. WAIS

4.4. News

5. World Wide Web

5.1. What is the Web?

5.2. Hypertext

5.3. Web Browsers

5.4. Writing a Web Page

5.5. Setting up a Web Server

6. Conclusion

Appendix

3. � TOC \o "1-3" \n �Education

Henry Rogers

1. Introduction

2. Software for teaching linguistics

3. Computer Assisted Instruction

4. Theory Modelling

5. Computers in specific areas of linguistics

5.1. Core Areas of Linguistics

5.2. Other Linguistic Courses

6. Developing teaching software

6.1. Design

6.2. Problems

7. Prospects

Appendix

4. � TOC \o "1-3" \n �Textual Databases

Susan Hockey

1. Acquiring and Creating Electronic Texts

1.1. Sources of Texts

1.2. Raw Text or Package?

1.3. Copyright Issues

1.4. Optical Character Recognition and Scanning

1.5. Typesetting Tapes

2. Markup Schemes

2.1. SGML and the Text Encoding Initiative (TEI)

3. Basic Analyses

3.1. Word Lists and Concordances

3.2. Defining Words

3.3. Sorting Words

3.4. Selecting Words

3.5. Sorting Contexts

3.6. Word Frequency Distributions

3.7. Concordances and interactive retrieval

3.8. Limitations

4. Conclusion

Appendix

5. The Unix™ Language Family

John Lawler

1. General

2. History and Ethnography of Computing

3. Phonetics and Phonology

4. Grammar

5. Editing and Formatting

6. Filters

7. Unix Resources for users�

6. � TOC \o "1-3" \n �Software for Doing Field Linguistics

Evan L. Antworth and J. Randolph Valentine

1. Hardware and operating systems

2. General-purpose versus domain-specific software

3. Criteria for evaluating software

3.1. Data collection and management

3.2. Analysis

3.3. Description

4. A catalog of linguistic software

4.1. Data management

4.2. Speech analysis and phonetics

4.3. Phonology and morphology

4.4. Syntax and grammar description

4.5. Lexicon

4.6. Text analysis

4.7. Language survey and comparison

7. � TOC \o "1-3" \n �Language Understanding and the Emerging Alignment of Linguistics and Natural Language Processing

James E. Hoard

1. Overview

2. The Changing Relationship Between Linguistics and Natural Language Processing

3. Understanding Language

3.1. Meaning, Interpretation, and Speakers’ Intentions

3.2. Basic Linguistic Elements of Language Understanding Systems

4. Linguistically-based and statistically-based NLP

5. Controlled Language Checking�

8. Theoretical and Computational Linguistics: Toward a Mutual Understanding

Samuel Bayer	, John Aberdeen, John Burger,�Lynette Hirschman, David Palmer, Marc Vilain

1. Introduction

2. History: Corpus-Based Linguistics

3. History: Evaluation

3.1. The Air Travel Information System (ATIS) evaluation

3.2. The Message Understanding Conferences (MUCs)

4. Methodology

4.1. Step 1: analyze the data

4.2. Step 2: hypothesize the procedure

4.3. Step 3: test the procedure

4.4. Step 4: iterate

5. Example: Sentence Segmentation

6. Example: Parsing

7. Benefits

7.1. The evaluation metric

7.2. Confronting the discontinuities

8. Conclusion

8.1. Coverage vs. depth

8.2. The nature of data

Glossary

�Bibliography

INDEX

�

�

�

�

�About the Authors

Evan L. Antworth has worked with the Summer Institute of Linguistics for 19 years, including 7 years of work in the Philippines. Since the early 1980's he has worked with field linguists as a consultant in the area of using microcomputers to do linguistic field work. In 1989 he began work in the Academic Computing Department of SIL in Dallas, TX where he is now associate editor of the department's series Occasional Publications in Academic Computing. He has collaborated on several software development projects of interest to linguists, including writing a book on PC-KIMMO, SIL's implementation of Kimmo Koskenniemis' two-level model of morphology.

Anthony Aristar is Associate Professor of Linguistics at Texas A&M University and co-moderator of The LINGUIST List, which he founded in 1989 when he was a Lecturer in Linguistics at the U. of Western Australia. Previously he was the Chief Linguist of a natural language research group at Microelectronics and Computer Technology Corporation, where he developed the first fully functional Arabic Morphological Analyzer. His primary research interests are typology, morphology, and historical linguistics. His recent publications include "Binder Anaphors and the Diachrony of Case Displacement" in Double Case-agreement by Suffixaufname, ed. Franz Plank (Oxford UP: 1994) and "On Diachronic Sources of Synchronic Pattern: An Investigation into the Origin of Linguistic Universals," Language 67: 1-33 (1991).

Helen Aristar Dry is Professor of Linguistics at Eastern Michigan University. She is co-founder and moderator, with Anthony Aristar, of The LINGUIST List, a 9000-member electronic discussion forum for academic linguists. She received her Ph. D. in 1975 in English Language and Linguistics from the University of Texas at Austin; and her primary research interests are textlinguistics, linguistic stylistics, and discourse analysis. Her publications have appeared in Style, Language and Style, Text, Journal of Literary Semantics, Studies in Anthropological Linguistics, and others. Recently she has done considerable legal consulting on authorship identification, and her non-academic publications include several articles on this topic.

James Hoard received his Ph.D. in Linguistics from the University of Washington, where he was a National Defense Foreign Language Fellow and a Woodrow Wilson Dissertation Fellow. Dr. Hoard is currently the Program Manager of the Natural Language Processing Program, Boeing Information and Support Services, Research and Technology organization. He is responsible for the program's long range research and development plan and is the principal investigator of the Natural Language Understanding project. Dr. Hoard is also an Affiliate Professor at the University of Washington and teaches courses in computational linguistics. Recent publications include "The Application of Natural Phonology to Computerized Speech Understanding" (with R. Wojcik, in B. Hurch and R. A. Rhodes (eds.), Natural Phonology: The State of the Art, Trends in Linguistics, Studies and Monographs, 92; 1996, pp. 121-131.)

Susan Hockey is Professor in the Faculty of Arts at the University of Alberta. She has been active in humanities computing since 1969. From 1975-1991 she was at Oxford University where her most recent position was Director of the Computers in Teaching Initiative Centre for Textual Studies and Director of the Office for Humanities Communication. From 1991 to 1997 she served as the first Director of the Center for Electronic Texts in the Humanities (CETH) at Princeton and Rutgers Universities, where, together with Willard McCarty, she founded and directed the CETH Seminar on Methods and Tools for Electronic Texts in the Humanities. She is Chair of the Association for Literary and Linguistic Computing and a member (currently Chair) of the Steering Committee of the Text Encoding Initiative. Her experience in electronic texts includes text archiving, concordance and retrieval software (development of the Oxford Concordance Program), teaching literary and linguistic computing (for 15 years), corpus design and development, cataloguing and documenting electronic texts. She is the author of two books, editor of three collections of essays, and author of approximately thirty articles on various aspects of text analysis computing.

John M. Lawler is Associate Professor of Linguistics at the University of Michigan in Ann Arbor, where he is Director of the Undergraduate Program in Linguistics, and teaches also in the Residential College. As Chair of the Linguistic Society of America’s Computing Committee, he organized the symposium and software exhibit that generated this volume. After a B.A. in Mathematics and German, an M.A. thesis on Some Applications of Computers to Linguistic Field Methods, and several years of teaching English as a Foreign Language, he received his Ph.D. under George Lakoff and Robin T. Lakoff. He is a software author (A World of Words, The Chomskybot) and has been a consultant on computing organization and software development for industry and academia. A generalist by inclination, he has published on a broad spectrum of linguistic topics, including the semantics of generic reference, second-language learning, Acehnese syntax, metaphor, English lexical semantics, metalinguistics, negation and logic, sound symbolism, and popular English usage.

Henry Rogers, having received a Ph.D. in Linguistics from Yale, is an Associate Professor of Linguistics, Anthropology, and Speech Pathology at the University of Toronto, and currently Associate Chair of Linguistics. He is the the author of Theoretical and Practical Phonetics, the co-author of two software packages for teaching linguistics -- Phthong and Arbourite, and the developer of a phonetic font family -- IPAPhon. In 1994, he was the Acting Director of the Centre for Computing in the Humanities. His research interests are writing systems, phonetics, and Scots Gaelic; currently he is working on a book of the writing systems of northern South Asia.

Gary Simons is director of the Academic Computing Department at the international headquarters of the Summer Institute of Linguistics in Dallas, Texas. In this capacity he has led a number of projects to develop software for field linguists, including the CELLAR project described in this volume. Prior to taking up this post in 1984, he did field work with SIL in Papua New Guinea (1976) and the Solomon Islands (1977-1983). He was active in the committee that developed the Text Encoding Initiative's guidelines for text analysis and interpretation (1989-1994), and currently serves as a member of the TEI's Technical Review Committee. He received a Ph.D. in general linguistics (with minor emphases in computer science and classics) from Cornell University in 1979.

The natural language group at the MITRE Corporation in Bedford, MA has been investigating the properties of human language in text and interactive discourse for many years. The integrated approach of the group reflects the authors' diversity. The director of the group, Dr. Lynette Hirschman, holds a Ph.D. in computational linguistics and is a leader in both the speech understanding and evaluation-based language processing communities. Dr. Samuel Bayer holds a Ph.D. in theoretical linguistics, and currently coordinates MITRE's internal research effort in human-computer interaction. Marc Vilain leads MITRE's message understanding effort, and has contributed innovative research to the areas of corpus-based language processing, knowledge representation, and message understanding. John Aberdeen holds M.A. degrees in both linguistics and cognitive psychology and has made broad contributions to MITRE's message understanding work, both in primary development and technology transition. David Palmer holds an M.S. in computational linguistics and specializes in text segmentation, both at the word and sentence level. John Burger has both contributed to and led research in a wide range of areas related to language processing, including multimodal interaction, discourse

understanding, and information retrieval. For a bibliography and more information, please visit the group's Web site at 	http://www.mitre.org/resources/centers/advanced_info/g04h/nl-index.html.

�
Introduction

	

		John M. Lawler Helen Aristar Dry

	 University of Michigan Eastern Michigan University

Computing and linguistics

Few linguists in industrialized countries have managed to avoid using computers in the last decade. More important for the future of the profession, almost none of these are young linguists. Computers have dramatically changed the professional life of the ordinary working linguist (OWL), altering the things we can do, the ways we can do them, and even the ways we can think about them. The change has been gradual, incremental, and largely experiential. But the handwriting is already on the screen – the rate of change is accelerating, and the end is not in sight.

The relations between computing and linguistics are in fact deeper and more interesting than mere technological change might suggest. Indeed, the advent of widespread access to computing power may well have had an effect on the discipline comparable to that of the early study of native American languages. In the first half of this century, the experience of doing fieldwork on native American languages shaped the concepts and methodologies of American Structuralism; now, in the second half of the century, the common experience of using computers is shaping the way we conceptualize both linguistics and language.

This is apparent, for example, in the metaphors we use. As is widely recognized, the metaphor of automatic data processing underlies and informs the goals and methodology of generative grammar. And, whatever the validity of this image as an intellectual or ideological basis for linguistic theory, it is unquestionably valid in representing the actual experience of doing linguistics today, as anyone who has studied both syntax and programming will attest.

Of course, one reason the computing metaphor works so well is that language truly is a form of software. Just as the human brain was the model for computer hardware, human language was the model for computer software — and we are now, after a decade of widespread, intensive experience with computers, in a position to recognize experientially what that means. The social, cultural, and intellectual activities of linguistics and computing (in academia, in hardware and software industries, and in various user communities) are woven of many of the same conceptual threads. The relations between linguistics and computing are not only metaphoric, but symmetrically so, and represent a natural and useful description of important aspects of both phenomena.

It is no wonder, then, that linguists were among the first scholars outside of the strictly technical fields to become generally computer-literate. Computational technologies offer linguists significant benefits, both at the individual and the disciplinary level. They can facilitate our individual research and teaching, allowing us to gather information more quickly, analyze large bodies of data more efficiently, and reach a more varied group of students through individualized teaching programs. At the same time, they are reshaping the discipline, bringing to light new areas of research, new types of data, and new analytical tools.

 This book is an attempt to help the ordinary working linguist take full advantage of these technological opportunities. It provides wide-ranging information on Linguistic Computing, in all the senses of that phrase; and it was written specifically for readers with some knowledge of language and linguistics, as well as some curiosity about computing. This description fits, not only linguists per se, but also an expanding group of individuals who are not professional linguists, but who deal computationally with language: among others, programmers and analysts, library information specialists, and academic humanists engaged in the study of texts. We have tried to meet the needs of these readers, at the same time as we focus on computational information particularly relevant to linguistics. Section 3 enumerates some of the features which are designed to make the book accessible to a wide range of readers.

Needs

First and foremost, the contributors were asked to write in a non-technical style and to assume a minimum of computational knowledge on the part of their readers. Given the claims in Section 1 about the general computer literacy of the discipline, this request may seem to require explanation. But, in the first place, the book is intended for students as well as working linguists. And, in fact, as noted in Section 4, most of the chapters would be effective as classroom introductions to particular topics, or as supplementary background reading.

And, in the second place, our experience suggests that — however computer-literate linguists are as a group — few individual linguists outside the strictly computational subfields would lay claim to thorough understanding of the technologies they use or perfect confidence in learning new ones. Many feel that their computer knowledge is spotty rather than systematic, since often it was acquired “on the fly,” in bits and pieces, under pressure of the need to solve a particular problem or perform a specific task. Such linguists, we believe, may welcome overviews which “begin at the beginning,” even on topics they already know something about.

Similarly, many linguists may welcome guidance on choosing or adapting linguistic software, even though they are experienced computer users. Computer technology is, of course, complex and rapidly changing, and the readily available commercial programs often turn out to be ill-suited to the needs of academics. As a result, most of us hesitate before embarking on learning a new piece of software or Internet functionality. After all, what we learn may soon be made obsolete by newer developments. And furthermore, it is difficult to tell, ahead of time, whether the benefits we will gain from the software will justify the effort involved in mastering it.

In such quandaries, we have received only minimal help from the software industry. Commercial developers rarely write software for academic purposes; and, as a result, there are few published evaluations to guide us in choosing software for teaching or research.

Commercial software development is, of course, a competitive business; and the particular economics of the industry almost insure that scholars will not be a primary market. Unlike many other industries, the software industry sustains development costs that far exceed manufacturing costs. Designing reliable software is a difficult, lengthy process; and it is also extremely expensive.� By contrast, the costs of duplicating the final deliverable programs are negligible. This means that software manufacturers must recoup what they spend on development by selling multiple copies of the finished product.

As a result, software development is driven by the perceived needs of businesses, which can and will pay high prices for multiple copies of programs, and which can and will upgrade their software regularly. Scholars, on the other hand, represent a small, specialized, and comparatively impoverished market. Those whose needs dovetail with the needs of business may be able to find useful commercial software. But those whose computing needs are more complex are usually disappointed. This group includes many linguists. And some of these have filled the gap by developing their own software, while others have learned to modify or enhance common software packages to suit their specialized purposes. Much of this ‘homegrown’ software and many of the development tools could be useful to other linguists; so several of the overviews in this book also survey and evaluate relevant software.�

Purpose and provenance of the book

This book sprang from a single event, a colloquium entitled “Computing and the Ordinary Working Linguist,” which the editors organized for the 1992 meeting of the Linguistic Society of America in Philadelphia. One of the editors (John Lawler) also organized the first annual LSA software exhibit for that meeting. Together these two events drew the attention of many linguists to the role of computing in their professional lives; and there were requests for a printed followup. This book is the result: its topics and contributors include many from the original panel, although the two lists are not identical.

Besides this introduction, the book has eight chapters, each focused on a different aspect of the interaction of computing and linguistics. The topics are arranged roughly in the order of increasing specialization. The early chapters are thus more general, and in some cases more accessible, than the last. However, all are designed for a non-technical audience. To that end, the book includes a Glossary of the special computing terms used in the various articles. Terms in the Glossary appear in bold italics upon their first occurrence in a chapter. And, where relevant, chapter appendixes provide annotated lists of selected print, software, and network resources to guide the reader in learning more about the topic. Fuller versions of these appendices are also available on the World Wide Web (see section 5).

Overview of the chapters

Chapter 1, “The Nature of Linguistic Data and the Requirements of a Computing Environment for Linguistic Research” by Gary F. Simons, the Director of Computing in the Summer Institute of Linguistics, discusses language data and the special demands which it makes on computational resources. As Simons puts it:

(1)	The data are multilingual, so the computing environment must be able to keep track of what language each datum is in, and then display and process it accordingly.

(2)	The data in text unfold sequentially, so the computing environment must be able to represent the text in proper sequence.

(3)	The data are hierarchically structured, so the computing environment must be able to build hierarchical structures of arbitrary depth.

(4)	The data are multidimensional, so the computing environment must be able to attach many kinds of analysis and interpretation to a single datum.

(5)	The data are highly integrated, so the computing environment must be able to store and follow associative links between related pieces of data.

(6) While doing all of the above to model the information structure of the data correctly, the computing environment must be able to present conventionally formatted displays of the data.

This chapter prefigures most of the major themes that surface in the other chapters, and contains some discussion of the CELLAR prototype computing environment now under development by SIL. It should be read first, and in our opinion it should be required reading for anyone planning a research career in linguistics.

Chapter 2, “The Internet: An Introduction” by Helen Dry of Eastern Michigan University and Anthony Aristar of Texas A&M University, the co-moderators of the LINGUIST List, is intended to be an Internet primer — it offers an overview of the workings of the Internet and prompts the reader to try out several basic Internet technologies. After a discussion of the immediate effects of the net on linguists, it describes the protocols that make the Internet possible, discusses the software that implements features of the net like email, ftp, gopher, and the World Wide Web, and concludes with instructions on constructing a Web page. The authors attempted to make the chapter clear enough to help new Internet users but also comprehensive enough to fill in gaps in the knowledge of “old hands.” Linguists who make use of the Internet in their courses may find this a useful chapter to distribute to students at the beginning of the term.

Chapter 3, “Education,” by Henry Rogers of the University of Toronto, an author of both linguistic teaching software (Phthong) and linguistics fonts (Palphon), explains the advantages and drawbacks of using software for teaching linguistics. It also offers tips on developing teaching software, useful to the many linguists who choose to create their own programs or customize existing software packages in order to better meet their needs. Besides a great deal of good advice, derived from experience, this chapter includes a complete, annotated survey of the currently available educational software for linguistics. It should therefore be very valuable to professors already committed to computer-aided instruction, as well as to those who have just begun looking for new ways to present linguistic material to their students.

Chapter 4, “Textual Databases” by Susan Hockey of the University of Alberta, a major figure in the establishment of the Oxford Text Archive and the Text Encoding Initiative, is a discussion of the generation, maintenance, and study of large text corpora. The availability of data collections like the Brown and LOB corpora has dramatically changed many areas of language scholarship (see for example the chapter by Bayer et al in this volume). This chapter describes what corpora are, where they can be accessed, how they are annotated, what the various types of markup communicate, and what software is available to manipulate them. SGML and the work of the Text Encoding Initiative are concisely explained; and, in sum, the article represents a succinct and authoritative overview useful to anyone wishing to use electronic texts in their teaching or research.

While Chapter 4 deals with getting and organizing textual data, Chapter 5, “The Unix Language Family” deals with what you can do with it once you’ve got it. This chapter, written by John Lawler of the University of Michigan, one of the co-editors of this volume, is an introduction to Unix, the most widely-used computer operating system for workstation-class machines. It is written in the form of a language sketch, à la Comrie (1987), on the assumption that linguists who are comfortable with complex technical subjects like case and aspect systems, complex clauses, and formal grammars will find the technical complexities of Unix amenable if they are presented in familiar ways. Among other topics, it explains regular expressions (a formal specification of lexical strings for search-and-replace operations), filter programs, and software tools. Examples include simple scripts and aliases, and techniques for construction of lexical analysis tools from standard Unix programs. For experienced computer users who have yet to try creating programs, the chapter demystifies the construction of software tools. And it should be valuable to computer novices as well, since it shows what can be accomplished by non-programmers using only analytical thinking and the power of Unix.

In Chapter 6, “Software for Doing Field Linguistics,” Evan L. Antworth of the Summer Institute of Linguistics and Randolph Valentine of the University of Wisconsin-Madison discuss a basic problem for ordinary working linguists: how to use computers to advantage in organizing and analyzing linguistic data. Along the way, they give thoughtful and detailed answers to some perennial questions, like “What kind of computer should I buy?” and “What criteria should I use to judge software for linguistic use?” The chapter concludes with an annotated survey of available language analysis software, focusing on “readily available, low cost software products that run on personal computers, especially portable computers.” This survey should be an important resource list for research linguists and their students, whether or not they ever do fieldwork.

The final two chapters deal with Computational Linguistics (CL), or Natural Language Processing (NLP), an area that is as much a part of Computer Science as of Linguistics, and that is terra incognita for many linguists, even those who regularly use computers. It is also an area that has significant commercial applications, and both chapters are written by computational linguists working in non-academic environments.

By design, they constitute a point-counterpoint discussion of the recent history and prospective future of the field of NLP. While the authors of both chapters agree on the �
importance of NLP and its eventual impact on linguistic theory, they represent two quite distinct viewpoints on the nature and practice of natural language processing, and its relation to traditional linguistics.

In Chapter 7, “Language Understanding and the Emerging Alignment of Linguistics and Natural Language Processing,” James E. Hoard of the Boeing Corporation suggests that NLP has already developed the technology necessary to produce commercial-quality products which can perform the following functions:

Grammar and Style Checking – Providing editorial critiques of vocabulary usage, grammar, and style – improving the quality of all sorts of writing – especially the readability of complex technical documents.

Machine Translation – Translating texts, especially business and technical texts, from one natural language to another.

Information Extraction – Analyzing the meaning of texts in detail, answering specific questions about text content. For many kinds of text (e.g., medical case histories) that are in a well-bounded domain, systems will extract information and put it into databases for statistical analyses.

Natural Language Interfaces – Understanding natural language commands and taking appropriate actions, providing a much freer interchange between people and computers.

Programming in English – Enabling the use of carefully controlled, yet ordinary, human language to program computers, largely eliminating much of the need for highly-specialized and arcane computer ‘languages.’

Modeling and Simulation – Enabling computer modeling and simulation of all manner of real-world activities and scenarios where symbolic information and symbolic reasoning are essential to success.

Hoard’s discussion is based on a “top-down” model of language understanding, with syntactic, lexical, semantic, and pragmatic components, most of which are familiar enough to traditional linguists. He advances the thesis “that the need for language understanding to meet the goals of NLP will have a profound effect on the objectives of linguistics itself,” outlines criteria for applying linguistic theory to the goals of language understanding, and concludes:

The effect of NLP on academic linguistics will produce a profound enlargement in its scope and objectives and greatly influence the work of its practitioners. The shift will be . . . one that places the present focus on language description, including the concern for language acquisition and linguistic universals, within the much larger (and to my mind, much more interesting) context of language understanding.

	

This is a provocative article, and it has provoked a response from representatives of a radically different tradition in NLP, that of Corpus-Based Linguistics. In Chapter 8, “Theoretical and Computational Linguistics: Toward a Mutual Understanding,” Samuel L. Bayer and his colleagues at Mitre Corporation point out that, since its inception,

CL has alternated between defining itself in terms of and in opposition to mainstream theoretical linguistics. . . . Since the late 1980s, it seems that a growing group of CL practitioners has once more turned away from formal theory. In response to the demands imposed by the analysis of large corpora of linguistic data, statistical techniques have been adopted in CL which emphasize shallow, robust accounts of linguistic phenomena at the expense of the detail and formal complexity of current theory.

This “bottom-up,” data-driven, statistical model of NLP has had great recent success, which Bayer et al describe in detail. Linguists have always known that natural language is significantly redundant, though this has often been seen more as a performance matter than something linguistics should deal with. What the results of Corpus-based NLP seem to show is that, on the contrary, this is an exploitable design feature of natural language, and with the advent of powerful means of statistical analysis of large corpora, a surprising amount of structure and meaning can be extracted from text without recourse to techniques grounded in linguistic theory. A crucial point made in this chapter is that:

… a large subset of language can be handled with relatively simple computational tools; a much smaller subset requires a radically more expensive approach; and an even smaller subset something more expensive still. This observation has profound effects on the analysis of large corpora: there is a premium on identifying those linguistic insights which are simplest, most general, least controversial, and most powerful, in order to exploit them to gain the broadest coverage for the least effort.

		

Those who have wondered what has been going on in NLP, and how it will eventually affect conventional linguistics, should find much of interest in these chapters.

Conclusion

The eight chapters, then, explore many different facets of the interaction between computers and linguistics. In approach, they range from “How to” chapters teaching basic skills to knowledgeable overviews of whole subdisciplines, such as NLP. Together, they offer a range of linguistically relevant computing information intended to address some of the needs noted in section 2, e.g., the need for:

Coherence. The initial chapters by Simons, and by Dry and Aristar, though very different in level and scope, both attempt to provide systematic explanations of topics which many linguists’ understand only partially.

Evaluation. Each chapter includes some evaluative material, intended to compensate for the scarcity of evaluations of academic software. But the chapters by Rogers and by Antworth and Valentine are primarily concerned with surveying the programs available for language scholarship and education.

Development and application. The chapters by Rogers and Lawler offer advice on customizing existing software and creating new software, often on an ad hoc basis, to solve immediate problems in language analysis.

Knowledge of the discipline. The chapter by Hockey describes a new datasource which is having considerable impact on several linguistic subfields. And, finally, the last two chapters on NLP by Hoard, and by Bayer et al, suggest ways the discipline may develop in response to the changing scholarly and economic environments. These three chapters, then, acquaint the reader with the effect that computer technology is having on the evolution of the field.

We hope that the book will serve novice linguists as a primer at the same time as it serves others as a handbook and guide to resources. Any such guide dates rapidly, of course; but we have attempted to maintain the book’s technological relevance as long as possible by:

focussing on technology that is both mature enough to be useful, and likely, in our opinion, to continue growing in importance to linguistics.

addressing each topic at a sufficiently general level, so that the usefulness of the information is not tied to a specific implementation or environment.

posting each chapter’s annotated resource list as an online appendix on the World Wide Web. The appendixes appearing in the printed book represent only the most important and stable resources. On the Web pages, these have been augmented with additional listings and live links to current Internet resources. These Web pages will be regularly updated by the authors. They can be found at the URL:

		http://www.routledge.com/

In this way, we hope to take advantage of one of the new avenues of communication opened up to academics by Internet technology. We expect electronic communication to become ever more important to our discipline, since a field like linguistics is defined in the last analysis by who communicates with whom, and how they interact. There is now a totally new communicational topology in linguistic demography, due in large part to the widespread use of computers. We hope this book will be of use to those mapping out these new lands.

�

The Nature of Linguistic Data and the Requirements of a Computing Environment for Linguistic Research

Gary F. Simons

Summer Institute of Linguistics

The progress made in the last decade toward harnessing the power of electronic computers as a tool for the ordinary working linguist (OWL) has been phenomenal. As the decade of the 80s dawned, virtually no OWLs were using computers, but the personal computer revolution was just beginning and it was possible to foresee its impact on our discipline (Simons, 1980). Now, more than fifteen years later, the personal computer is commonplace; battery-powered laptops have even made computing a routine part of life for the field linguist. But despite widespread success at getting hardware into the hands of linguists, we have fallen short of realizing the full potential of computing for the OWL. Why is this? Because commercial software does not meet all the requirements of the linguist, and the linguistic community has not yet been able to develop all the software that will fill the gap.

Other articles in this book (particularly the survey by Antworth) document the software that is currently available to the OWL. There are many good tools that many linguists have put to good use, but I think it is fair to say that this body of tools, for the most part, remains inaccessible to the average OWL. There are two chief reasons for this. First, there is a friendliness gap – many programs are hard to use because they have one-of-a-kind user interfaces that have a steep learning curve and are easy to forget if not used regularly. The recent emergence of graphical user interface standards (such as for Windows and Macintosh) is doing much to solve this problem. Second, there is a semantic gap – many current programs model data in terms of computationally convenient objects (like files with lines and characters, or with records and fields). They require the user to understand how these computational objects map onto the objects of the problem domain (like grammatical categories, lexical entries, and phonemes). In cases where programs do present a semantically transparent model of the problem domain, the programmer has typically had to build it from scratch using underlying objects like files, lines, and characters. While the results can be excellent, the process of developing such software is typically slow.

As we look to the future, better (and faster) progress in developing software for linguists is going to depend on using methods that better model the nature of the data we are trying to manipulate. The first five sections of this article discuss five essential characteristics of linguistic data which any successful software for the OWL must account for, namely, that the data are multilingual, sequential, hierarchically structured, multidimensional, and highly integrated. The sixth section discusses a further requirement, namely, that the software must maintain a distinction between the information in the data and the appearance it receives when it is formatted for display. The concluding section briefly describes a computing environment being developed by the Summer Institute of Linguistics to meet these (and other) requirements for a foundation on which to build better software for the OWL.

The multilingual nature of linguistic data

Every instance of textual information entered into a computer is expressing information in some language (whether natural or artificial). The data that linguists work with typically include information in many languages. In a document like a bilingual dictionary, the chunks of data switch back and forth between different languages. In other documents, the use of multiple languages may be nested, such as when an English text quotes a paragraph in German which discusses some Greek words. Such multilingualism is a fundamental property of the textual data with which OWLs work.

Many computerists have conceived of the multilingual data problem as a special characters problem. This approach considers the multilingualism problem to be solved when all the characters needed for writing the languages being worked with can be displayed both on the screen and in printed output. In the computer’s way of implementing writing, each character (like a letter of the alphabet or a punctuation mark) is assigned to a character code; this is a number that is used to represent that character in the computer’s memory. All the character codes that are defined to implement a particular way of writing form a character set. In the ASCII character set, for instance, capital A is assigned to code 65, capital B to 66, and so on.

In the MS-DOS environment it has been difficult to do much with special characters since the operating system views the world in terms of a single, predefined set of 256 characters. Linguists have had to resort to using character shape editors (see, for instance, Simons 1989b) to define a customized character set that contains all the characters they need to use in a particular document. The limit of having only 256 possible characters is exacerbated by the fact that each combination of a diacritic with a base character must be treated as a single composite character. For instance, to correctly display a lowercase Greek alpha with no breathing, a smooth breathing, or a rough breathing, and with no accent, an acute accent, a grave accent, or a circumflex accent, one would need to define twelve different characters; only then can we display all the possible combinations of diacritics on a lowercase alpha.

The Windows and Macintosh environments have made a significant advance beyond this. Rather than a single character inventory, these operating systems provide a font system. Data in languages with different writing systems can be represented in different fonts. This means that the total character inventory is not limited by the number of possible character codes. One could put Roman characters in one font, Greek characters in another font, and Arabic characters in still another. The same string of character codes can then be displayed as different characters on the screen, depending on which font is selected.. By switching between fonts in the application software, the user can access and display as many characters as are needed.

The Macintosh font manager offers yet another advance in that it supports zero-width overstriking diacritics. An overstriking diacritic is a character that is superimposed on-the-fly over a separate base character (somewhat like a dead key on a conventional typewriter). It is possible to build thousands of composites dynamically from a single font of 255 characters. Thus, for instance, almost all the European languages with Roman-based writing systems can be rendered with the basic Macintosh extended character set. (The Windows font system still has no notion of a zero-width diacritic. An overstriking diacritic can be simulated, however, by creating an extremely narrow character that spills over onto the neighboring character it is meant to overstrike. This works quite satisfactorily on some systems, and can be a real mess on others. The outcome depends on how the screen driver for the particular hardware was implemented.)

The special-character approach encodes information in terms of its visual form. It says that if two characters look the same, they should be represented by the same character code, and conversely, if they look different, they should have different codes. In so doing it causes us both to underdifferentiate and to overdifferentiate important semantic (or functional) distinctions that are present in the encoded information. We underdifferentiate when we use the same character codes to represent words in different languages. For instance, the character sequence die represents rather different information when it encodes a German word as opposed to an English word.

We overdifferentiate when we use different character codes to represent contextual variants of the same letter in a single language. For instance, the lowercase sigma in Greek has one form if it is word initial or medial, and a second form if it is word final. An even more dramatic example is Arabic, in which nearly every letter of the alphabet appears in one of four variant forms depending on whether the context is word initial, word medial, word final, or freestanding. Another type of overdifferentiation occurs when single composite characters are used to represent the combination of base characters with diacritics that represent functionally independent information. For instance, in the example given above of using twelve different composite characters to encode the possible combinations of Greek lowercase alpha with breathing marks and accents, the single functional unit (namely, lowercase alpha) is represented by twelve different character codes. Similarly, the single functional unit of rough breathing would be represented in four of these character codes, and in two dozen others for the other six vowels.

To represent our data in a semantically transparent way, it is necessary to do two things. First, we must explicitly encode the language that each particular datum is in; this makes it possible to use the same character codes for different languages without any ambiguity or loss of information. (This also makes it possible to correctly perform the language-specific aspects of data processing that will be discussed shortly.) Second, we need to encode characters at a functional level and let the computer handle the details of generating the correct context-sensitive display of form.

It was Joseph Becker, in his seminal article “Multilingual Word Processing” (1984), who pointed out the need to distinguish form and function in the computer implementation of writing systems. He observed that character encoding should consistently represent the same information unit by the same character code. He then defined rendering as the process of converting the encoded information into the correct graphic form for display. He observed correctly that for any writing system, this conversion from functional elements to formal elements is defined by regular rules, and therefore the computer should perform this conversion automatically. Elsewhere I have described a formalism for dealing with this process (Simons, 1989a).

The writing system is the most visible aspect of language data; thus we tend to think first of rendering when we think of multilingual computing. But the language a particular datum is in governs much more than just its rendering on the screen or in printed output; it governs many other aspects of data processing. One of these is keyboarding: a multilingual computing environment would know that part of the definition of a language is its conventions for keyboarding, and would automatically switch keyboard layouts based on the language of the datum under the system cursor.

Another language-dependent aspect of data processing is the collating sequence that defines the alphabetical order for sorted lists in the language. For instance, the character sequence ll comes between li and lo in English, but in Spanish it is a separate "letter" of the alphabet and occurs between lu and ma. Still other language-dependent aspects are rules for finding word boundaries, sentence boundaries, and possible hyphenation points. Then there are language-specific conventions for formatting times, dates, and numbers. As stated in the opening sentence of this section, “Every instance of textual information entered into a computer is expressing information in some language;” it is necessary for the computer to know which language each string of text is in, if it is going to be able to process the information correctly.

There are two recent developments in the computing industry which bode well for our prospects of having a truly multilingual computing environment. The first of these is the Unicode standard for character encoding (Unicode Consortium, 1996). The Unicode Consortium, comprised of representatives from some of the leading commercial software and hardware vendors, has developed a single set of character codes for all the characters of all the major writing systems of the world (including the International Phonetic Alphabet). This system uses two bytes (16 bits) to encode each character. Version 2.0 of Unicode defines codes for 38,885 distinct characters (derived from 25 different scripts). There are still many scripts that are not supported (especially ancient ones), but the standard does reserve an unallocated block of 6,400 character codes for “private use.” A major aim of Unicode is to make it possible for computer users to exchange highly multilingual documents with full confidence that the recipient will be able to correctly display the text. The definition of the standard is quick to emphasize, however, that it is only a standard for the interchange of character codes. Unicode itself does not address the question of context-sensitive rendering nor of any of the language-dependent aspects of data processing. In fact, it is ironic that Unicode fails to account for the most fundamental thing one must know in order to process a stream of character data, namely, what language it is encoding. Unicode is not by itself a solution to the problem of multilingual computing, but the support promised by key vendors like Microsoft and Apple is likely to make it an important part of the solution.

The second recent development is the incorporation of the World Script component into version 7.1 of the Macintosh operating system (Ford and Guglielmo, 1992). Almost ten years ago, Apple developed an extension to their font manager called the script manager (Apple, 1988). It handled particularly difficult font problems like the huge character inventory of Japanese and the context-sensitive rendering of consonant shapes in Arabic. A script system, in conjunction with a package of “international utilities,” is able to handle just about all the language-dependent aspects of data processing mentioned above (Davis, 1987). The script manager’s greatest failing was that only one non-Roman script system could be installed in the operating system. World Script has changed this. It is now possible to install as many script systems as one needs. Nothing comparable is yet available for Windows users; at one time the trade press reported that Apple intended to port this technology to the Windows platform, but we are still waiting. As software developers make their programs take advantage of technology like this, adequately multilingual computing may become a widespread reality.

The sequential nature of linguistic data

The stream of speech is a succession of sound that unfolds in temporal sequence. Written text is similarly sequential in nature, as word follows word and sentence follows sentence. The order of the words and sentences is, of course, a significant part of the information in text, since changing the order of constituents can change the meaning of the text.

This aspect of text we almost take for granted since our text editors and word processors support it so transparently. They excel at modeling the sequential nature of text, but fall short in modeling the other aspects of the information structure discussed below in sections 3 through 5. In particular, word processors do not allow us to represent the multidimensional and highly integrated nature of text. These are the areas where database systems shine; it is thus appealing to consider using a database system to model textual information.

Ironically, when it comes to the sequential nature of text, database management systems are as weak as word processors are strong. The relational database model, which is the model embodied by most popular database systems, does not inherently support the notion of sequence at all. Relations are, by definition, unordered. That is, the rows (or records) in a data table are inherently unordered. If one wants to represent sequence in a database model, one must add a column (or field) to store explicit sequence numbers and then manipulate these values to put pieces in the right order. For instance, if a data table represented a text and its rows represented the sentences in the text, then the table would need a column to store the sequence number of the sentence. A view that printed the text would first have to sort the rows by sentence number. With just sentences this does not sound too bad, but if we want a richer model that includes paragraphs, sentences, words, and morphemes, then we end up needing four columns for recording position in sequence. When the data model becomes this complex, relational database report generators do not have built-in views that can display the data as a conventionally formatted text.

Though relational databases do not model sequence as transparently as word processors, it can in fact be done. For instance, Parunak (1982) presents an approach to modeling Biblical text in a relational database; his model provides columns for book, chapter, verse, and word number. Stonebraker and others (1983) have developed extensions to the relational database model that make it better able to cope with texts. The main innovation was to implement a new kind of relation, called an “ordered relation,” which supports the notion that text is inherently sequential. Unfortunately, extensions like this have not become commonplace in commercially available database systems.

The hierarchical nature of linguistic data

The data we deal with as linguists are highly structured. This is true of the primary data we collect, as well as of the secondary and tertiary data we create to record our analyses and interpretations. One aspect of that structuring, namely hierarchy, is discussed in this section. Two other aspects, the multidimensionality and the interrelatedness of data elements, are discussed in the next two sections.

Hierarchy is a fundamental characteristic of data structures in linguistics. The notion of hierarchy is familiar in syntactic analysis where, for instance, a sentence may contain clauses which contain phrases which contain words. Similar hierarchical structuring can be observed at higher levels of text analysis, such as when a narrative is made up of episodes which are made up of paragraphs and so on. We see hierarchy in the structure of a lexicon when the lexicon is made up of entries which contain sense subentries which in turn contain things like definitions and examples. Even meanings, when they are represented as feature structures which allow embedded feature structures as feature values, exhibit hierarchical structure. The list of examples is almost limitless.

As fundamental as hierarchy is, it is ironic that the tools that are most accessible to personal computer users – word processors, spreadsheets, and database managers – do not really support it. There is little question about this assessment of spreadsheets; they simply provide a two-dimensional grid of cells in which to place simple data values. In the case of database management systems (like dBase or 4th Dimension) and even card filing systems (like AskSam or Hypercard), a programmer can construct hierarchical data structures, but such a task would be beyond the average user. This is because the inherent model of these systems is that data are organized as a flat collection of records or cards.

Even word processors do not do a good job at modeling hierarchy. They essentially treat textual data as a sequence of paragraphs. They typically support no structure below this. For instance, if a dictionary entry were represented as a paragraph, the typical word processor would have no way of modeling the hierarchical structure of elements (like headword, etymology, sense subentries, and examples) within the entry. Rather, word processors can only model the contents of a dictionary entry as a sequence of characters; it would be up to the user to impose the internal structure mentally. Going up the hierarchy from paragraph, word processors do a little better, but it is done by means of special paragraph types rather than by modeling true hierarchy. For instance, if a document has a structure of chapters, sections, and subsections, this is imposed by putting the title of each element in a heading paragraph of level 1, 2, or 3, respectively. Under some circumstances, such as in an outline view, the word processor can interpret these level numbers to manipulate the text in terms of its hierarchical structure.

A new generation of document processing systems with a data model that is adequate to handle the hierarchical structure in textual data is beginning to emerge. They are based on an information markup language called SGML, for Standard Generalized Markup Language (Goldfarb, 1990; Herwijnen, 1990; Cover, 1992). SGML is not a program; it is a data interchange standard. It specifies a method for representing textual data in ASCII files so that the data can be interchanged among programs and among users without losing any information. The information in focus is not just the stream of characters, but also detailed information about the structure of the text. In 1986 SGML was adopted by the leading body for international standards (ISO, 1986); since that time it has gained momentum in the computing industry to the extent that SGML compatibility is now beginning to appear in popular software products.

The basic model of SGML is a hierarchical one. It views textual data as being comprised of content elements which are of different types and which embed inside each other. For instance, the following is a sample of what a dictionary entry for the word abacus might look like in an SGML-conforming interchange format:

<entry>� <headword>abacus</headword>� <etymology>L. abacus, from Gr. abax</etymology>� <paradigm>pl. -cuses, or -ci</paradigm>� <sense n=1><pos>n</pos>� <def>a frame with beads sliding back and forth� on wires for doing arithmetic</def></sense>� <sense n=2><pos>n</pos>� <def>in architecture, a slab forming the top of� the capital of a column</def></sense>�</entry>

Each element of the text is delimited by an opening tag and a matching closing tag. An opening tag consists of the name of the element type enclosed in angle brackets. The matching closing tag adds a slash after the left angle bracket. In this example, the entry element contains five elements: a headword, an etymology, paradigm information, and two sense subentries. Each sense element embeds two elements: a part of speech and a definition. The sense elements also use the attribute n to encode the number of the sense.

Rather than forcing the data to fit a built-in model of hierarchical structure (like a word processor does), SGML allows the model of data structure to be as rich and as deep as necessary. An SGML-conforming data file is tied to a user-definable Document Type Definition. The DTD lists all the element types allowed in the document, and specifies the allowed structure of each in terms of what other element types it can contain and in what order. Though the notation of a DTD may be daunting at first, the concept that lies behind it should be very familiar to a linguist. A DTD is really nothing more than a context-free grammar. The left-hand side of each rewriting rule names an element, and the right-hand side tells what elements are allowed to occur within it. For instance, consider the following rewrite rule for the structure of a book:

book --> front-matter body (back-matter)

That is, a book consists of front matter, followed by a body, optionally followed by back matter. The SGML notation for declaring this same rule in a DTD is as follows:

<!ELEMENT book - - (front-matter, body, back-matter?) >

In addition to sequence and optionality, the pattern for the right-hand side (called the “content model” in SGML parlance) may also express alternation, repetition, and grouping. This formalism provides the power to describe very rich document structures and to do so precisely and unambiguously.

The DTD is a machine-readable document with a formal syntax prescribed by the SGML standard. This makes it possible for SGML-based application software to read the DTD and to understand the structure of the text being processed. Because the DTD is a plain ASCII file, it is also human readable and thus serves as formal documentation, showing other potential users of a data set how it is encoded.

Perhaps the greatest impact of a formal definition of possible document structure is that it helps to close the semantic gap between the user and the computer application. This is particularly true when the formal model of the structure matches the model in the minds of practitioners in the domain, and when the formal model uses the same names for the data element types that domain specialists would use to name the corresponding real-world objects. For instance, an SGML-based document editor starts up by reading in the DTD for the type of document the user wants to create (whether it be, for instance, the transcription of a conversation or a bilingual dictionary). The editor then helps the user by showing what element types are possible at any given point in the document. If the user attempts to create an invalid structure, the editor steps in and explains what would be valid at that point. The formal definition of structure can help close the semantic gap when data are processed, too. For instance, an information retrieval tool that knows the structure of the documents in its database can assist the user in formulating queries on that database.

The academic community has recognized the potential of SGML for modeling linguistic (and related) data. The Text Encoding Initiative (TEI) is a large-scale international project to develop SGML-based standards for encoding textual data, including its analysis and interpretation (Burnard, 1991). It has been sponsored jointly by the Association for Computers and the Humanities, the Association for Linguistic and Literary Computing, and the Association for Computational Linguistics and has involved scores of scholars working in a variety of subcommittees (Hockey, 1989-92). Guidelines for the encoding of machine-readable texts have now been published (Sperberg-McQueen and Burnard, 1994) and are being followed by many projects. The TEI proposal for markup of linguistic analysis depends heavily on feature structures; see Langendoen and Simons (1995) for a description of the approach and a discussion of its rationale. See section 2.1 of Hockey’s article in this volume on “Text databases” for more discussion of SGML and TEI.

While the power of SGML to model the hierarchical structure in linguistic data takes us beyond what is possible in word processors, spreadsheets, and database managers, it still does not provide a complete solution. It falls short in the two aspects of linguistic data considered in the next two sections. The attributes of SGML elements cannot themselves store other elements; thus the multidimensional nature of complex data elements must be modeled as hierarchical containment. To model the network of relationships among elements (i.e., the integrated nature of linguistic data), SGML offers a pointing mechanism (through IDs and IDREFs in attribute values), but there is no semantic validation of pointers. Any pointer can point to any element; there is no mechanism for specifying constraints on pointer destinations in the DTD. Thus the only relationships between element types that can be formally declared in the DTD (and can thus be enforced by it) are sequential precedence and hierarchical inclusion.

The multidimensional nature of linguistic data

A conventional text editing program views text as a one-dimensional sequence of characters. A tool like an SGML-based editor adds a second dimension – namely, the hierarchical structure of the text. But from the perspective of a linguist, the stream of speech which we represent as a one-dimensional sequence of characters has form and meaning in many simultaneous dimensions (Simons, 1987). The speech signal itself simultaneously comprises articulatory segments, pitch, timing, and intensity. A given stretch of speech can be simultaneously viewed in terms of its phonetic interpretation, its phonemic interpretation, its morphophonemic interpretation, its morphemic interpretation, or its lexemic interpretation. We may view its structure from a phonological perspective in terms of syllables, stress groups, and pause groups, or from a grammatical perspective in terms of morphemes, words, phrases, clauses, sentences, and so on.

The meaning of the text also has many dimensions and levels. There is the phonological meaning of devices like alliteration and rhyme. There is the lexical meaning of the morphemes and of compounds and idioms which they form. There is the functional meaning carried by the constituents of a grammatical construction. In looking at the meaning of a whole utterance, there is the literal meaning versus the figurative, the denotative versus the connotative, the explicit versus the implicit. All of these dimensions, and more, lurk behind that one-dimensional sequence of characters which we have traditionally called “text.”

There are already some programs designed for the OWL which handle this multidimensional view of text rather well, namely, interlinear text processing systems like IT (Simons and Versaw, 1987; Simons and Thomson, 1988) and Shoebox (Davis and Wimbish, 1993). In these programs, the user defines the dimensions of analysis that are desired. The program then steps through the text helping the user to fill in appropriate annotations on morphemes, words, and sentences for all the dimensions. Another kind of program that is good at modeling the multidimensional nature of linguistic data is database managers: when a database record is used to represent a single object of data, the many fields of the record can be used to represent the many dimensions of information that pertain to it.

While interlinear text processors and database managers handle the multidimensional nature of linguistic data well, they fall short by not supporting the full hierarchical nature of the data. To adequately model linguistic data, the OWL needs a system which has the fully general, user-definable hierarchy of elements (such as SGML offers) in which the elements may: (1) contain the smaller elements which are their parts, and (2) have a record-like structure of fields which can simultaneously store multiple dimensions of information concerning the elements.

The highly integrated nature of linguistic data

Sequentially ordered hierarchies of data elements with annotations in multiple dimensions are still not enough. Sequence and hierarchy, by themselves, imply that the only relationships between data elements are those inherent in their relative positions in sequence and in the hierarchy of parts within wholes. But for the data on which linguistic research is based, this only scratches the surface. Crosscutting the basic hierarchical organization of the elements is a complex network of associations between them.

For instance, the words that occur in a text are composed of morphemes. Those morphemes are defined and described in the lexicon (rather than in the text). The relationship between the surface word form and its underlying form as a string of lexical morphemes is described in the morphophonology. When a morpheme in an analyzed text is glossed to convey its sense of meaning, that gloss is really an attribute of one of the senses of meaning listed in the lexicon entry for that morpheme. The part-of-speech code for that use of the morpheme in the text is another attribute of that same lexical subentry. The part-of-speech code itself does not ultimately belong to the lexical entry. It is the grammar which enumerates and defines the possible parts of speech, and the use of a part-of-speech code in the lexicon is really a pointer to its description in the grammar. The examples which are given in the lexicon or the grammar relate back to the text from which they were taken. Cultural terms which are defined in the lexicon and cultural activities which are exemplified in texts relate to their full analysis and description in an ethnography. All the above are examples of how the different parts of a field linguist's database are conceptually integrated by direct links of association. Weber (1986) has discussed this network-like nature of the linguistic database in his description of a futuristic style of computer-based reference grammar.

This network of associations is part of the information structure that is inherent in the phenomena we study. To maximize the usefulness of computing in our research, our computational model of the data must match this inherent structure. Having direct links between related bits of information in the database has the obvious benefit of making it easy and fast to retrieve related information.

An even more fundamental benefit has to do with the integrity of the data and the quality of the resulting work. Because the information structures we deal with in research are networks of relationships, we can never make a hypothesis in one part of the database without affecting other hypotheses elsewhere in the database. Having the related information linked together makes it possible to immediately check the impact of a change in the database.

The addition of associative links to the data structure also makes it possible to achieve the virtue of normalization, a concept which is well known in relational database theory. In a fully normalized database, any given piece of information occurs only once. That piece of information is then used throughout the database by referring to the single instance rather than by making copies of it. If, instead, there are multiple copies of a given piece of information throughout a database, the ubiquitous problem known as “update anomaly” is sure to arise when that piece of information needs to be changed. An update anomaly occurs when some of the copies of a given piece of information get updated, while others are overlooked. The end result is a database that is inconsistent in the best case, or invalid in the worst. Smith (1985) gives a good explanation of a process by which the design of a relational database can be normalized.

A linguistic example may help to illustrate the importance of database normalization. Consider, for instance, a lexical database. One kind of associative link that occurs in a lexical database is cross-references from one entry to another. One piece of information that occurs in each entry is the spelling of its headword. If we were using a text editor to build and manage the database, we would be likely to make cross-references by typing the headword for the entry we want to reference. However, this violates the normalization principle since the spelling of the headword now occurs more than once in the database. If we were to change the spelling of the headword in its main entry, then all cross-references to it would break and refer to a nonexistent entry. Another example is part-of-speech labels. If the labels are typed out in every lexical entry, then one is almost certain to introduce inconsistencies over the life of the database. The ideal solution in both cases is to use a database system that truly supports the integrated nature of the data by allowing direct links between data items. The cross-reference would be stored as a pointer to another lexical entry; the part-of-speech would be stored as a pointer to a part-of-speech object in the grammar. The latter would be the only place in which the label for the part-of-speech is actually spelled out. When the analyst decides to change the spelling of the label, all references are simultaneously updated since they now point to a changed spelling. When the data are normalized like this, an update anomaly is not even possible.

The separation of information from format

It is imperative that any system for manipulating linguistic data maintain the distinction between information and format. In printed media, we use variations in format to signal different kinds of information. For instance, in a dictionary entry, bold type might be used to indicate the headword, square brackets might delimit the etymology, while italics with a trailing period might mark the part-of-speech label. The bold type is not really the information – it is the fact that the emboldened form is the headword. Similarly, the square brackets (even though they are characters in the display) are not really part of the data; they simply indicate that the delimited information is the etymology.

Generalized markup (the GM in SGML) is the notion of marking up a document by identifying its information structure rather than its display format (Coombs, Renear, and DeRose, 1987). For instance, in a dictionary entry one should insert a markup tag to say, “The following is the headword” (as does the <headword> tag in the SGML example given above in section 3, rather than putting typesetting codes to say, “The following should be in 10 point bold Helvetica type.” In the generalized markup approach, each different type of information is marked by a different markup tag, and then details of typesetting are specified in a separate document which is often called a style sheet (Johnson and Beach, 1988). The style sheet declares for each markup tag what formatting parameters are to be associated with the content of the marked up element when it is output for display.

The separation of content and structure from display formatting has many advantages. (1) It allows authors to defer formatting decisions. (2) It ensures that formatting of a given element type will be consistent throughout. (3) It makes it possible to change formats globally by changing only a single description in the style sheet. (4) It allows the same document to be formatted in a number of different styles for different publishers or purposes. (5) It makes documents portable between systems. And perhaps most important of all for our purposes, (6) it makes possible computerized analysis and retrieval based on structural information in the text.

The lure of WYSIWYG (“what you see is what you get”) word processors for building a linguistic database (like a dictionary) must be avoided at all costs when “what you see is all you get.” On the other hand, a database manager which allows one to model the information structure correctly, but cannot produce nicely formatted displays is not much use either. The OWL needs a hybrid system that combines the notion of generalized markup for faithfully storing the information structure of the data with the notion of style sheets that can transform the information into conventionally formatted displays.

Toward a computing environment for linguistic research

The above sections have discussed six requirements for a computing environment that manages linguistic data:

(1)	The data are multilingual, so the computing environment must be able to keep track of what language each datum is in, and then display and process it accordingly.

(2)	The data in text unfold sequentially, so the computing environment must be able to represent the text in proper sequence.

(3)	The data are hierarchically structured, so the computing environment must be able to build hierarchical structures of arbitrary depth.

(4)	The data are multidimensional, so the computing environment must be able to attach many kinds of analysis and interpretation to a single datum.

(5)	The data are highly integrated, so the computing environment must be able to store and follow associative links between related pieces of data.

(6)	While doing all of the above to model the information structure of the data correctly, the computing environment must be able to present conventionally formatted displays of the data.

It is possible to find software products that meet some of these requirements, but we are not aware of any that can meet them all. Consequently, the Summer Institute of Linguistics (through its Academic Computing Department) has embarked on a project to build such a computing environment for the OWL. We call it CELLAR – for Computing Environment for Linguistic, Literary, and Anthropological Research. This name reflects our belief that these requirements are not unique to linguists – virtually any scholar working with textual data will have the same requirements.

Fundamentally, CELLAR is an object-oriented database system (Rettig, Simons, and Thomson, 1993). Borgida (1985) gives a nice summary of the advantages of modeling information as objects. Zdonik and Maier (1990) offer more extensive readings. Booch (1994) and Coad and Yourdon (1991) teach the methodology that is used in analyzing a domain to build an object-oriented information model for it.

In CELLAR each data element is modeled as an object. Each object has a set of named attributes which record the many dimensions of information about it (addressing requirement 4 above). An attribute value can be a basic object like a string, a number, a picture, or a sound; every string stores an indication of the language which it encodes (requirement 1; see Simons and Thomson (forthcoming) for a detailed discussion of CELLAR's multilingual component). An attribute can store a single value or a sequence of values (requirement 2). An attribute value can also be one or more complex objects which are the parts of the original object, thus modeling the hierarchical structure of the information (requirement 3). Or, an attribute value can be one or more pointers to objects stored elsewhere in the database to which the original object is related (requirement 5).

Each object is an instance of a general class. Each class is sanctioned by a user-definable “class definition” which describes what all instances of the class have in common. This includes definitions of all the attributes with constraints on what their values can be, definitions of virtual attributes which compute their values on-the-fly by performing queries on the database, definitions of parsers which know how to convert plain ASCII files into instances of the class, definitions of views which programmatically build formatted displays of instances of the class, and definitions of tools which provide graphical user interfaces for manipulating instances of the class. The latter two features address requirement 6; see Simons (1997) for a fuller discussion of this aspect of CELLAR.

CELLAR is really a tool for building tools. Programmers will be able to use CELLAR to build class definitions that model the content, format, and behavior of linguistic data objects. These models are the tools that OWLs will use. Because CELLAR’s model of data inherently supports the very nature of linguistic data, the programmer can quickly build semantically transparent models of linguistic data. CELLAR was first released to the public in December 1995 as part of the product named LinguaLinks. LinguaLinks uses CELLAR to implement applications for phonological analysis, interlinear text analysis, lexical database management, and other tasks typically performed by field linguists. See SIL's home page on the Internet (http://www.sil.org) for the latest information concerning availability.

� 	A glance at Brooks (1995) provides ample evidence of the inherent difficulties, and the expense.

Using Computers in Linguistics

Front Matter

�PAGE �16�

�PAGE �15�

Lawler and Dry: Introduction

Using Computers in Linguistics

Simons: A Computing Environment

�PAGE �40�

