The Internet: An Introduction
	Helen Aristar Dry 		 Anthony Rodrigues Aristar
Eastern Michigan University 		 Texas A&M University
Introduction
Most linguists make regular use of several Internet functions: email, FTP, telnet, and WWW browsers. Indeed, these functions are beginning to be taken for granted as part of our professional lives. However, many of us do not know what the Internet actually is or how it works. This chapter attempts to remedy this. It is essentially an Internet primer. It offers basic information about the operation of 8 Internet technologies, as well as a brief review of Internet history, emphasizing how the Internet has changed linguistics in just a few short years.
Before the advent of the Internet, there were essentially only two ways to learn what others in the field were doing. One was by reading published material or private letters. The other was by verbal communication, at a conference, at work, or over a phone. Since work in some linguistic subfields was likely to be out-of-date by the time it was published, and much current work was circulated in draft form, the research that many individual linguists were aware of was limited to that of the small subset of linguists with which they were in regular contact. Isolation from the central figures in the discipline meant isolation from current scholarship.
Furthermore, much linguistic infrastructure was what may be called Ôlocal.Õ Jobs, conferences, and graduate programs were often advertised only within national boundaries. As a result, many universities hired only their own nationals; and many linguists attended only conferences which reflected the theories predominant in their own countries.
Then, in the late 1980’s, a change began. What had once been a network which linked US government research computers – the ARPAnet – began to be made more generally accessible. By 1990, it had changed into the Internet, which linked the computers at most universities and colleges. Accounts on these computers became available to university faculty and students. And linguistic information began to be commonly disseminated among individuals who had no other professional contact. In 1989 the first linguistic mailing list was established. Shortly thereafter linguistics archives began to be made accessible via anonymous FTP. And before long the Internet had effectively eroded the isolation of the “lone linguist.”
If you were on the Internet, it mattered less and less whether you worked as the only linguist in a foreign languages department, whether you lived in Australia or San Francisco, whether you were part of a central network of linguists or part of no network at all. The Internet enabled you to find out what other linguists were saying. It also enabled you to have an impact on the discipline previously available only to those at prestigious universities: if you had something of interest to say, you could say it at an international forum without leaving home.
Today, information about conferences, fellowships, linguistics programs, and jobs is distributed within a much wider geographical area. And because a small local conference can be advertised as widely as a large one, organizers often find that the number of submissions has increased, with a commensurate increase in quality. Similarly, universities are experiencing increases in the number and diversity of job and fellowship applications. The Chair of Linguistics at a Scandinavian university recently told us that applications had increased threefold since they began advertising job openings on the electronic mailing list which we help to run. (This is the LINGUIST List, discussed in section � REF _Ref350571481 \n �3.1.4� below. Inevitably, many of our generalizations about the Internet derive from our experience with this list.) Similarly, one of our own universities received 130 applications following a single job announcement on this list – the job was filled before it was ever announced on paper.
Information about individual research has also become more widely available, in part because of new technologies which put the distribution of information into the hands of individuals. Publishing a book or starting a large email list requires the cooperation of a considerable number of people, from editors to university administrators. Setting up a World Wide Web page, however, requires little more than a personal computer, a modem or ethernet card, and software obtainable free from the Internet. World Wide Web technology, in short, allows linguists for the first time to take control of the means by which their ideas are disseminated, substantially decreasing the lag-time between the completion of a piece of work and its publication.�
Given the impact of Internet technologies on the discipline and on the individual linguist, it is useful for linguists to know how Internet technology functions, what Internet services are commonly available, and how these can be used to enhance research. This chapter attempts to provide some of this information, in a style accessible to beginners. Let us begin by looking at one of the fundamental metaphors which describes the operation of the net.
What is the Internet�
The metaphor upon which the Internet is based is the metaphor of a protocol. In human terms, a protocol is a way some interaction must be carried out. Likewise, a computer protocol specifies the way that two machines must interact. However, Internet protocols not only tell the machines how to transfer data, they also ensure that the pieces of data they send are well-formed (i.e., “grammatical”). Protocols are the linguae francae of the Internet: they specify both the grammar of the language and the pragmatics of the interaction.
Protocols became the core of Internet operations because of the physical limitations of the earliest nets. When the first incarnation of the Internet, the ARPAnet, was put in place, there were no completely reliable networks. What lay between your machine and the machine you wished to communicate with was an unpredictable mixture of cables, phone-lines, and satellite relay stations. It was never certain whether all of the bits in between the machines were going to work. Connectivity, then, could not be based upon one invariant path to a destination. It required that machines be able to select alternate paths. But alternate paths might lead to different types of machines. Thus it was also necessary to transfer data in a way that was only minimally dependent on the nature of the machines involved.
IP
The solution was provided by the combination of the Internet Protocol or IP, and the Router. The IP is simply a set of instructions which tells a machine (1) what form the data it transfers must have, (2) how to open a connection with another machine (3) how to transfer data, and (4) how to close the connection. All data, IP says, must be sent in ÔpacketsÕ. A packet is a chunk of data surrounded by what is called an “envelope.” This is accompanying information which tells the forwarding machine the unique address of the machine the packet is being sent to. This address is a 32-bit number, a sequence of 32 binary values like:
10000011 00001011 00000011 00000011

But it usually appears to human beings in the form of ‘dotted octetÕ notation. Dotted octet notation groups the 32 bits of the real address into 4 sets (or bytes) of 8 bits. So, for example, the 32 bit address above is divided into 4 parts, each of which is interpreted as a single binary number:
10000011 = 131
00001011 = 18
00010111 = 23
00000011 = 3

Combining these numbers gives 131.18.23.3 in dotted octet notation. This is called the IP number of the machine.
Domain names
For the benefit of human beings, each Internet machine has not only a unique IP number, but also a unique name. These names are arranged in dotted ÔdomainsÕ which can be read right to left by machines. The rightmost domain always indicates a domain which is more general than the one to its left. Thus, if we find an address like zippy.bangor.uk, we know that uk – which is the domain name for the United Kingdom – is more general than bangor – which is the domain name for the University of Bangor in Wales – which in turn is more general than zippy, which is the name of the machine at Bangor which is to receive the packet.
When human beings send a message to zippy.bangor.uk, this address has to be translated into an IP address. This mapping is done by software called a ÔresolverÕ, which sends a request to a set of machines called Domain Name Servers (usually abbreviated DNS). These servers may not themselves know every IP number on the Internet, but they know how to find them by interrogating other Name Servers. They can then return a valid IP number to the resolver, so that the source machine can create envelopes for each of the packets making up the message.
Routers
After a machine breaks the data it is sending into packets and encloses each in an IP envelope, it sends them to a router. A ÔrouterÕ is simply a machine whose specialized job is finding paths for packets through the Internet. It looks for functional, uncongested paths to destinations, and sends packets along them. If some part of the network is unresponsive or overused, it finds other paths to the target machine.
One reason the Internet has been able to grow so fast has to do with Internet addressing and the way routers work. No router needs to know the address of every machine on the Internet, because the Internet is hierarchically organized into networks and sub-networks. The largest network is indicated by the first set of digits in the IP number.� The second set of digits indicates a subnet of the major network, and the third a subnet of the subnet. If a router, then, needs to send a packet to the IP number 164.76.28.2, all the router needs to know is how to send the packet to the 164 network. The router at 164 will know how to get packets to the subnet 76, and so on down to the machine numbered “2,” which is the target machine.
A major advantage of this addressing system is that all IP number assignment can be handled locally. And, as a result, a new machine at any site can become part of the Internet freely and immediately. If subnet 76 is assigned to a university, for example, with subnet 28 being one of its LANs (Local Area Network), a new university machine can be assigned the number 164.76.28.16 by the local system administrators, without applying to any outside authority. Because of the router system, no machine outside the university network needs to be informed of the new address. It just needs to be able to get the information when it needs it.
TCP
The packet surrounded by the IP envelope usually contains, along with the data, some information added by another important Internet protocol, TCP (Transmission Control Protocol). TCP is necessary because IP only delivers packets. It does not ensure that they will arrive in the same order as they were sent. So different packets belonging to the same body of data may arrive at their destination by totally different routes, and at different times.
For many kinds of interactions this is not acceptable. If you make a remote log-in (e.g., to read your mail when away from home), you must interact with the remote machine in real time, and it must receive your commands in the order you send them. You cannot have the packets that contain those commands arriving out of order. This is where TCP comes in. TCP puts sequence numbers in the packets. These numbers allow the receiving machine to rearrange the packets back into their original order. They also allow it to tell if anything is missing. If only packets 1, 2, 3, and 5 arrive, the machine knows that packet 4 is missing and gets it retransmitted.
TCP also allows the specification of what are called ÔportsÕ, so that a particular set of packets will be sent to a particular ÔportÕ on a machine. These ports are not real physical ÔportsÕ, but rather instructions to the receiving machine about the way it is supposed to handle the incoming data.
Recipient Internet machines often run a piece of software called Inetd, which ‘listens’ simultaneously for messages on several ports and, when data arrive, starts the software appropriate to the port. When a message is directed to port 25, for example, Inetd wakes up the mailer software. If a message arrives at port 23, it activates telnet software. If a message arrives at port 21, it activates FTP software, and so forth.
However, when many functions are run on the same machine, it becomes inefficient to activate them each through Inetd. To increase speed, software for each function can also be run as a daemon, a pre-activated program that is always ready to perform its task. World Wide Web servers are usually daemons; they ‘listenÕ on port 80 and spawn a process whenever a message is directed to that port.
Clients and Servers
The simplicity of the way the Internet works makes it very flexible. Almost all interactions between machines are based upon the protocols outlined above. If a machine installs a version of TCP/IP, it doesnÕt matter what platform it is, whether itÕs a Mac (where the protocol is called MacTCP or TCP/IP) or a DOS machine running windows 3.1 (where itÕs usually called Winsock) or a big Sun 1000 server (where it’s called TCP/IP); using this protocol, all these machines can function on the Internet.
However, some Internet operations require two additional pieces of software, one residing on the target machine and one residing on the home machine. These are called, respectively, the server and the client. TCP/IP ensures that machines can connect with each other and send packets of data, sequentially numbered, to the right ports. It does not ensure that the packets will contain the right kind of information. Servers are pieces of software which know how to access information of specific types, and clients are pieces of software that know how to request information from the appropriate servers.
Of the three basic functionalities created to use TCP/IP (electronic mail, FTP, and telnet), two of these, FTP and telnet, require client and server software. To telnet to another machine, for example, you must run a telnet client on your machine and contact a telnet server on the other end. Most large Internet machines run FTP and telnet servers as a matter of course, so that other Internet machines can FTP or telnet to them; and they also run telnet and FTP clients, so that their own users can initiate FTP or telnet sessions to remote machines.
As more and more personal machines become part of the Internet, more individuals are installing FTP or telnet clients on their own machines. And some are even installing servers, so that others can connect to the machine and retrieve information. Suppose, for example, that you create an extensive database of Klingon Battle Poetry (the most popular genre on the Klingon homeworld). To make this important resource available to the Internet community, you can simply put it on your local machine and install an appropriate server. If you install an FTP server that accesses that your Klingon directory, for example, then anyone with an FTP client on their machine can log on and copy your files of battle poetry to their own disk.
Basic Internet Functions
Sections � REF _Ref350571537 \n �3.1�, � REF _Ref350571570 \n �3.2�, and � REF _Ref350571590 \n �3.3� below treat electronic mail, FTP and telnet, describing how to access these functions and giving some hints about their use. However, users familiar with these services may wish to skip ahead to section � REF _Ref350571604 \n �5�, where we discuss the World Wide Web.
Electronic Mail
By now everyone is familiar with email. Indeed, it is email and mailing lists which have been primarily responsible for the changes in information dissemination described in section � REF _Ref350571629 \n �1�. However, email does have limitations which make other types of transfer more practical for some kinds of files.
On the Internet, mail delivery usually uses a piece of software called an MTA (Mail Transport Agent) which sends data via SMTP (Simple Mail Transfer Protocol). On a Unix platform, the MTA is usually sendmail, and it can be accessed directly by typing “sendmail” at the root prompt. However, users normally don’t do this; rather they interact with sendmail via a mail interface, or mailer. On a Unix platform, the default mailer is usually either mail or mailx.
If mailx is your default, you activate it when you type “mail” at your home prompt; and it allows you to, e.g., display a list of the headers of incoming mail by typing “h”, read messages by typing their numbers, and send mail by typing “mail” plus an email address. Mailx is actually a multifunction mailer that will allow you to perform numerous other operations, such as activate an editor within an email message, make aliases for frequently used addresses, or save and concatenate messages in files. However, mailx is not menu-oriented, so it is not particularly easy to learn; and, unless you use an editor to compose your email messages, it is fairly unforgiving: it will not allow you to move back a line in order to correct a mistake; nor will it wrap lines for you. If you forget to add returns at the ends of your lines, your message may display correctly on the screen but, unless it is very short, you will not be able to send it.
For these reasons, many people prefer other mail interfaces like Pine or Elm. One of these is likely to be available on your mainframe account; and they are significantly easier to learn than mailx, since they are menu-driven. � REF _Ref350571898 * MERGEFORMAT �
Figure 1� below, for example, gives the screen which displays when we type “pine” at the home prompt.

Figure � SEQ Figure * ARABIC �1� about here

Some people prefer their mailers to be even more user-friendly and to reside on their home machines. Some mailers like Eudora and the mailer that comes with Netscape (a World Wide Web browser described in section � REF _Ref350571648 \n �5.3�) allow you to access your mail on a mainframe account without ever having to log on to the mainframe. You simply call up your mail client and tell it to “Get new messages” or “Check mail.” The client then logs on to the mainframe for you and transfers your new mail to the machine on your desk.
The Limitations of Electronic Mail
Despite the utility of electronic mail in facilitating both discussion lists and personal correspondence, email does have salient limitations for linguists. These limitations derive from two sources: the kind of encoding mail-messages require, and the way that fonts are handled on computers.
Normal mailers can handle only one kind of text, 7-bit US-ASCII. ASCII is a means of encoding characters that was designed in the bad old days when no one could imagine that anyone would wish to send a message in any character not used in English. ASCII cannot encode many of the characters used in European languages, let alone non-Latin characters and IPA (International Phonetic Alphabet). These are either lost or damaged in the mail transfer. You canÕt, therefore, simply put a word-processor file into a mail-message and expect it to arrive at the other end in a usable form. Almost all word-processors use non-ASCII characters.
Fonts are also a problem. When you type a letter into a word-processing system, what you're really doing is adding a code which is represented in a specified font as a particular glyph. That same code will map to a totally different glyph in another font.
 For example, when you type a "p" you add a code which is equivalent to the decimal number "112". But if you're typing in Hindi, 112 will map to a totally different glyph, since Hindi, which uses Devanagari script, also uses a different set of fonts. So, if someone sends a document in Hindi to someone who doesn't have a Hindi font, what will appear on their screen is a series of meaningless Latin characters. What this means for linguists is that any special fonts you might use – for example IPA – may be unreadable to your correspondents.
There are three ways around this difficulty. One is a permanent one: to change the way that fonts are encoded so that a particular code always maps to the same character in the same script no matter what font is used. This solution is on the horizon: it is called Unicode, and is a mapping scheme which assigns (or will ultimately assign) unique codes to all the symbols used in the representation of human language. Unicode mailers are already starting to appear, e.g. the Panglot mailer. When these come into common use, we can stop worrying about the fonts our recipients are using.
Meanwhile we have to tolerate less satisfying solutions. One is to use a utility which turns a text containing non-ASCII characters into a text which has only ASCII characters. The file can then be transmitted by mail to another machine where – hopefully – your recipients will have software which will turn the file back into its original non-ASCII version.
If you are on a Unix machine, the utility which turns non-ASCII to ASCII and back again is called uuencode. If youÕre on a Mac, the same functionality is served by BinHex. Word (and some other word-processing programs) can do something similar. You can save a word-processing file as rtf (Rich Text Format), which turns a word-processing file into 7-bit ASCII. If you save a file in rtf and send it via email, your recipients can download it, remove the mail-header, and use Word to display it with its original formatting on their own computers.
However, if you use special fonts, such as an IPA font or an Arabic font, to write the file, youÕll have to send the font along with the file unless your recipients already have it. Even then, unless your recipients are on the same platform, you can’t be sure that the characters you typed will be the ones displayed their machines. Although there are programs which translate fonts, e.g., Mac TrueType fonts into Windows TrueType fonts, these do not work flawlessly; often characters are lost.
There is another way to transmit non-ASCII files, one which is in many ways superior to the methods mentioned above, though it shares Ñ and even compounds Ñ some of its problems. This is to use mailers which can encode messages in MIME. Since MIME is becoming a more and more important way of sending mail, we will explore it in a little more detail here
MIME
MIME, an acronym for "Multipurpose Internet Mail Extensions,” is a protocol which allows mail messages with a very varied content to be exchanged successfully. With non-MIME mailers, you can't simply insert a file in a word-processing format (such as Word or Word Perfect) and expect it to arrive undamaged at its destination, since only 7-bit US-ASCII and lines shorter than a 1000 characters will survive the transfer. Images and audio files will also be damaged in transit.
MIME mailers are a partial solution to this problem. Such mailers include information in the messages which allow the recipent mailer to understand what kind of message it is receiving. And they allow you to include any kind of data in a mail message by encoding the message into the form mail messages must have, i.e. 7-bit US-ASCII with a line-length less than 1000 characters. The recipient mailer can then decode the message, and return its contents to the original form.
Suppose, for example, you use a Mac and wish to send your friends your latest work on the syntax of Ngarindjin. You tell your MIME mailer to attach the file to your mail-message. The mailer encloses the message within lines (which are called “boundary-markers”), and sends it off to your friends. When they receive the message, their MIME mailers take note of the markers, which indicate the file type and the kind of decoding needed to turn the file back into its original form. If, for example, the message is a binhexed file, and if the recipient is also running a Mac, a MIME mailer will unbinhex it and save it as a file on the desktop. All your friend now needs to do is click on the file and read it.
With a MIME mailer you can even include sound files of Ngarindjin or picture files showing the ghost gum tree beneath which you collected your data. Your recipients may need to have special software on their machines in order to turn your files back into sound and or pictures; but a fully MIME-compliant mailer will be able to tell them what kind of files they have received and what additional software is needed.
This does not mean that all difficulties disappear when a MIME mailer is used. There is still the problem of fonts. If you send someone a phonetic transcription of some data, the material will still be unreadable unless he or she has the same font you used for the transcription. What is more, like ordinary mailers, MIME mailers do not allow you to mix fonts easily in the same message. This means also that you can't use many different scripts in a single message, e.g. you can’t have a message written in English which includes data in Thai script. However, with a MIME mailer you can at least write your message using a word-processing program and then add the word-processor file as an attachment to your MIME message. Most word-processing programs have no trouble handling different fonts; and this way you’ll at least be able to send the information via email.
However, if you use a MIME mailer you may encounter another problem as well: incompatibility with non-MIME mailers. Suppose someone who uses a MIME mailer sends a message to someone who does not have one. If the message uses only ASCII characters, the recipient will have no trouble reading it. Most people won't even notice that the message contains MIME headers. Thus a message such as the following, typed into a MIME mailer:
"Hi, Penny! Congratulations on tenure!"
will appear just as above. The only clue that a MIME mailer sent the message will be a line in the header which will say the following:
Content-Type: text/plain; charset="us-ascii"
But if the message was written in, say, Word, and then attached to the message, the result will be a message like the following, which is totally unreadable by a human being:
--============_-1349349553==_============
Content-Type: text/plain; charset="us-ascii"

--============_-1349349553==_============
Content-Type: application/msword; name="congratulations.doc"
 ; x-mac-type="5736424E"
 ; x-mac-creator="4D535744"
Content-Disposition: attachment; filename="congratulations.doc"
Content-Transfer-Encoding: base64

0M8R4KGxGuEAAAAAAAAAAAAAAAAAAAAAOwADAP7/CQAGAAA
AAAAAAAAEAAAAgAAAAEAAAD+////AAAAAAAAAAD/////////////////////////////....

It's not enough, then, that you have a MIME mailer. The recipient has to have one too, or at least have software (such as mpack, munpack, or Metamail) which can convert what you have sent. Such software usually prompts the user to save the mail message as a file, which can then be transferred to the user’s home computer and read using a word-processor.
At this writing, there are still many people using non-MIME mailers. If you use a MIME mailer, it’s very likely that your messages will be unreadable to some of your correspondents. So it is important that you know what kind of mailer you have.
Many people are using MIME mailers without knowing it, since some of the most user-friendly mailers are, in fact, MIME-compliant. Here we can not give a list of all MIME mailers for all platforms. But the following are the most common: Eudora, Pine, Elm, Netscape Mail, Explorer Mail. Most mailers included in the software packages of Internet providers are now also MIME-compatible.
Thus, though MIME is undoubtedly the wave of the future, the future is not quite with us yet. It may be a while before we can assume that every email message we send will be easily read by every recipient.
Email Addresses
In the early days of email correspondence a recurring problem was that of finding an individual’s email address. Today most associations publish the email addresses of members with their membership lists, so the directory of a linguistic society may be all you need. However, many universities and organizations are also simplifying addressing, so that it is becoming easier to make a good guess. They have compiled a mailer-accessible database of all the different email addresses on site, so, if you know that someone works at, for example, the University of Texas, you can simply type your correspondent’s name plus the university designation, e.g.:
Jane.Doe@utexas.edu
jdoe@utexas.edu
doe@utexas.edu

You no longer need to know the department name or machine name in order to reach a correspondent.
Another source of linguists’ email addresses is the Linguists’ Nameserver at the address:
linguists@let.uva.nl
You ask this server for a linguist’s address by sending it an email message consisting of the command:
list SURNAME
This server has no connection with the email discussion list called The LINGUIST List, but it is also possible to use The LINGUIST List to find an email address (see section � REF _Ref350571481 \n �3.1.4� below).
Mailing Lists
As far as we know, the first electronic mailing list designed specifically for linguists was The LINGUIST List, started in 1989 at the U. of Western Australia with 69 subscribers. By 1997, it had grown to over 8600 subscribers from 82 different countries, thereby offering a concrete illustration of the popularity and utility of mailing lists. The LINGUIST List has become a general clearinghouse for all kinds of information relating to the discipline, but it still remains a vehicle for the linguistic discussion it was founded to carry. It can be accessed at the email address
 <linguist@linguistlist.org>
or read at one of its World Wide Web sites. We give only the main LINGUIST site here . From it, you can find a site which may be nearer to you, and thus faster to access:
	http://linguistlist.org/
You can use the search facility on the LINGUIST web site to find the email address of another subscriber. Simply click on “Addresses” on the home page. Also, if you are a LINGUIST List subscriber, you can retrieve subscriber addresses by email. Simply send the command
review linguist by name
to the LINGUIST listserv address:

	<linguist@linguist.ldc.upenn.edu>

You will receive the names and email addresses of all current subscribers. The file you receive is huge, however. So you should save the file immediately, without reading it (it will take 10 minutes to scroll across your screen as a mail message). Once you have saved the list as a file, you can use a search utility like grep to extract the name and address you want.
The LINGUIST List is also a good starting point from which to locate other linguistic resources on the World Wide Web. Every Web address which passes through LINGUIST is “captured” and added to its lists of datasources. The lists are extensive, since almost all linguistic Web addresses appear at some time in LINGUIST issues. In addition, LINGUIST now maintains the Virtual Library in linguistics, formerly at Brown University. Thus the LINGUIST homepage now offers access to the Web addresses of linguistic programs, software, corpora, mailing lists, fonts, conferences, jobs, personal pages of linguists, associations, journals, publishers, bibliographies, course syllabi, dictionaries, and sites dedicated to specific topics, e.g. sign language. �(Most of the addresses in this article were retrieved from the LINGUIST website.)
There are numerous other mailing lists of interest to linguists, focusing on everything from the interface between archeology/prehistory and language (ARCLING. Server: listproc@anu.edu.au) to the comparative linguistics in African Languages of the Sahel-Sahara zone (COMPARLINGAFRIC at listserv@unice.fr). Mailing lists frequently fade away, or change locations and contact persons. So if you are interested in joining a discussion list on a particular topic, it’s a good idea to check one of the several regularly-updated lists of mailing lists, e.g.:
The List of Language Lists prepared by Bernard Comrie and Michael Everson:
http://www.indigo.ie/egt/lnglst1d.txt
The List of Mailing Lists kept by the LINGUIST list:
http://linguistlist.org/lists.html
Both of these are preceded by useful instructions on how to join a mailing list. Usually you can subscribe by sending to the list address a message consisting of the single line:
subscribe <listname> <firstname> <lastname>
List subscription is usually automated, and there are 4 software programs commonly used to maintain lists: Listserv, ListProc, Mailbase, and Majordomo. Interaction with the list server will differ slightly depending on what program the list uses.
FTP
Because of the limitations of email, it is often practical to use FTP or ÔFile Transfer ProtocolÕ to transfer files between remote machines. If you are collaborating on a manuscript with a colleague, for example, you may well find it faster and more reliable to send your drafts back and forth using FTP rather than mail.
FTP works as follows. If you wish to get a file from a remote machine, you must start an FTP client on your own machine, and tell it to access the target machineÕs FTP server. You do this, on most machines, by typing the following:
ftp machine-name
e.g.
ftp zippy.org

At this point you will be asked to type your login name, and your password. Usually you must already have an account, or know an account name and password, on the remote machine. However, some machines allow what is called Ôanonymous loginÕ so that you �can access files which have been made available to the public. These machines let you log in using ÔanonymousÕ as your login name and your email address as the password.
After login, you will see a prompt like this:
ftp>
In order to find out what files are available on the remote system you can type one of two things: dir or ls (for list). Both will give you a directory of files, though ls will provide less information about them than dir. If you want to transfer a copy of one of these files to your home machine, you can type:
get filename
e.g.
get klingon.ode
If you want to get multiple files, then you use mget. For example, you might type the string:
mget *.ode
The remote machine will then transfer each file whose suffix is .ode to your machine, asking you each time whether you want the file. If you don't want to be asked, start ftp by typing ftp -i. This could be a dangerous operation, since there are tens of thousands of Klingon odes, and you have just given the command to download all of them. But if you have lots of disk space, FTP is a fast and easy way to retrieve multiple files, or large files such as electronic texts or corpora.
If you want to put a file on a remote machine, you use put to copy a single file, and mput to copy multiple files. You can transfer even non-ASCII files this way, without having to uuencode, binhex or zip them. However, non-ASCII files must be sent using binary transfer. You set FTP to binary transfer by simply typing ÔbinaryÕ, e.g:
ftp>binary
Most FTP programs will reply as follows:
200 Type set to 1
If you want to transfer a word-processing file, or a font, or a piece of software, always set binary, or it will fail to work on the other end. After binary transfer is complete, you can reset FTP to ASCII transfer (also called ÔtextÕ transfer) simply by typing ÔASCIIÕ, e.g.:
ftp>ASCII
And the FTP program will reply as follows:
200 Type set to A
However, you should probably make it a rule always to set binary for FTP. Certainly, if you donÕt know whether a file contains non-ASCII characters, you should transfer it as a binary file. To transfer an ASCII file as binary does no harm: it just takes slightly longer. The reverse, however, is not true. If you don’t set binary, FTP will interpret anything you send as ASCII, deleting or mistranslating non-ASCII characters.
Telnet
It is often the case that you are on one machine but need to do something on another. You might, for example, be visiting Los Angeles and need to read your mail on a machine in Chicago. If your Chicago machine allows remote logins (some do not, for security reasons), you can actually interact with its processor just as if you were sitting at your own home terminal.
You do this by typing the function ÔtelnetÕ followed by an argument which is your machine’s full Internet name, e.g:
telnet trixi.uchicago.edu
The telnet software will respond with the following kind of message:
 Trying...
 Connected to trixi.uchicago.edu.
 Escape character is '^]'.
SunOS UNIX 4.1 (trixi.uchicago.edu) (ttyp7)
login: <yourname>
Password: <yourpassword>

When youÕve typed your password, youÕll be logged onto trixi; and everything should seem just like it is at home, although the commands you type may take somewhat longer to execute. WhatÕs actually happened, of course, is that youÕve opened a TCP/IP connection with the remote machine. And there is a great deal going on in the background. For example, telnet must be able to tell what kind of machine youÕre on, since a Mac, for example, will handle output to the screen differently from an IBM.
Telnet is useful for other purposes than simply reading mail from a remote terminal. Thousands of libraries across the world are accessible by telnet; when you log on to a remote library to find a citation or “read the shelves” to find new books, you are searching the card catalog by telnet. The Appendix to this chapter includes addresses at which you can find lists of libraries available via telnet.
There are also some linguistic databases which can be accessed in this way, e.g. the South Asia database at columbianet.columbia.edu (select the menu item called CLIO Plus), and the Australian Language & Literacy database at lingua.cltr.uq.oz.au (login as dbguest, password NLLIA-db). Once logged on, you can search the database and display records by keying in commands, just as you would if the database were on your own machine. However, you can download copies of the records only in rather inconvenient ways, i.e., by having your machine record the whole telnet session as a file, or by telling your machine to Print Screen periodically.
Finding Information on the Internet
The three functionalities we have discussed allow you to contact other machines and thus to retrieve information whose location you know. What they donÕt do, however, is help you find information. Finding information has, of course, always been a problem on the Internet, since there is no central index of available files or sites. And the problem is being exacerbated by the daily establishment of thousands of new World Wide Web pages. Whatever their information potential, Internet sites are valueless if no one knows they exist.
Three of the most important and earliest solutions to this problem were Archie, Gopher, and WAIS. As we shall see, the first two are now often accessed via Web browser interfaces, such as Netscape, Lynx, Explorer or Mosaic, whose primary protocol is HTTP (HyperText Transfer Protocol). And both Archie and WAIS are becoming less and less useful as World Wide Web search facilities proliferate. However, they are still independently accessible on most mainframes and many workstations. So we describe them briefly in the sections which follow.
Archie
The most basic search system is called Archie, which is essentially a search facility for public FTP archives. Any such archive can register with Archie, and then keep what is called an ls-lR file, which is a recursive listing of all the files in that archive. Users may then use Archie to search all such registered files for substrings. Archie searches are very fast. For example, we searched on the string ÔlinguistÕ and in approximately 3 seconds we received the information given as � REF _Ref350571930 * MERGEFORMAT �Figure 2� below:

Figure 2 about here

In other words, Archie told us that if we FTP’d to any of the 4 hosts listed and changed the directory to the one specified after ‘Location,’ we would find a sub-directory there called ‘linguist.’ The string after ‘DIRECTORY,’ e.g. ‘drwxr-xr-x,’ tells us that ‘linguist’ is a directory and that it is accessible to the public; the first ‘d’ in the string indicates directory and the 3 ‘r’s’ in the string tell us that it is readable by user, group, and others. Note that Archie did not tell us whatÕs in the directories it found. To see a list of available files when using FTP, you’ll have to type dir, as described in 3.2 above.
Most large sites have an Archie client, which can talk to Archie servers, so that you can perform Archie searches from your command line when logged on to your mainframe account; you do this just by typing ÒArchieÓ followed by a search-term, as we did above. But you can also use email for an Archie search, simply by sending an appropriate request to an Archie server. There is, for example, an Archie server at a machine called archie.internic.net. Here you use special commands. The command ÔprogÕ, for example, tells the Archie server to find any file containing your search-string. So if you send a message to the address:
archie@archie.internic.net

containing the search command:
prog linguist
you will, in due course, receive a message from that Archie server telling you the location of all the files which match that search-string.
Alternatively, if you have an ethernet connection or are running the kind of software that allows you to use a graphical browser on your personal machine, you may be able to install one of the more user-friendly Archie clients. A search on ‘linguist’ via one of these clients, produced the screen given as � REF _Ref350571970 * MERGEFORMAT �Figure 3� below:

Figure 3 about here

This helpful Archie client labels the search returns as hosts, directories, and files. It also allows you to see the size of the file and the date it was written, and to bring it down to your home machine simply by clicking on it with your mouse.
Gopher
Gopher is a system which complements Archie, in that it organizes data in a different way, and will thus enable you to find a different subset of the body of information. Archie searches through directory and file names (and in some instances through file descriptions) in order to determine whether a particular string is present. If it finds such a string, it returns a listing of the file. What this means, of course, is that there is no necessary relation between a file-name and its content. A file might be named Ôbubble-gumÕ and be a screensaver. So if you really are looking for files on bubble-gum, youÕre going to have to sift through files which are irrelevant to your search.
Gopher to some degree obviates this, because it is based on human-produced indices, and human beings (usually) know what their files contain. The way Gopher works is as follows. If a site has information, human beings group the files into categories and put them in files in a special form. They install a Gopher server which has access to the Gopher files and responds to Gopher clients by showing the categories in the form of a hierarchical set of menus. These menus typically include things like ‘libraries,’ which will allow you access to catalogues of on-line libraries, or local news. You can see such a menu in � REF _Ref350572004 * MERGEFORMAT �Figure 4�:

Figure 4 about here

The particular set of menus you see varies according to the way your local Gopher server is set up. Since you can easily move to other Gophers, you can see their menu hierarchies as well. In Gopherspace, you can access any GopherÕs menus, but what one site catalogues under one menu item might be catalogued under quite another at a different site. One site, for example, indexes Virginia Woolf’s To the Lighthouse under literature, another under womenÕs writing, a third under romance. And if you donÕt know what category something is catalogued under, you canÕt find it.
Gopher, however, has one utility which allows you to sidestep this problem. ItÕs a utility which searches through file-names, just as Archie does, except that it searches inside Gopherspace. This utility is called Veronica, after the girlfriend of the comic-book character Archie, though it sometimes appears in Gopher menus under the anonymous menu-item ÒSearch Titles in Gopherspace.Ó With this utility you can often find what you want rather easier than by browsing menus. But, of course, as with Archie, you canÕt rely on the title of a file to have any connection to its content.
Like many Archie clients, Gopher will not only allow you to find the files you want, it will also go get them for you as well. If, for example, you want the on-line version of To the Lighthouse you discovered through Veronica, a simple command will have Gopher initiate an FTP session to that site and download a copy onto your disk. Gopher will also initiate telnet sessions if that is the appropriate action. Suppose, for example, you find through Gopher a genetics database which you can interrogate by telnet. Gopher will open the session for you, hand over control to telnet, and return when youÕve ended the telnet session. This ability to access the basic TCP/IP functions makes Gopher very �useful. All you need to know is how to use Gopher. If you wish, you can avoid the intricacies of anonymous logins or accessing FTP and telnet directly.
Until the advent of World Wide Web, Gopher was the only utility which allowed you this kind of flexibility. And it is still a useful means of finding information in cyberspace. Most Unix platforms have Gopher installed already, so to initiate Gopher on a Unix platform all you have to do is to type gopher and follow the menus which this command shows you.
WAIS

The last search utility which weÕll discuss here is WAIS, which is an acronym for ÒWide Area Information ServiceÓ. Like Gopher, it relies on indexes. But it differs from Gopher in that these are indexes of the text inside files rather than an index categorizing files by content. For example, suppose you wish to find a file of Hungarian recipes for soup. WAIS will make an index of the words occurring in the file itself, e.g., cabbage, paprika, sour cream, whereas Gopher will index the file under larger category headings like Food > Hungarian > Recipes > Soup.
WAIS has one feature that is potentially very useful: it gives each word in the document a relevancy score. This means that if you institute a search using the word cabbage, WAIS will not only retrieve a list of documents which includes the Hungarian recipe file but it will also tell you how important a word cabbage is within that document. �It is able to tell you this because WAIS databases are indexed by a special program called waisindex which gives each word a score based on:
the word’s frequency per 1000 words. Words occurring more frequently in the document get higher scores.
the position of the word in the document. Words in titles and headings, for example, get higher scores.
the rarity of the word in all the documents WAIS knows about. Words which are generally rare in documents get higher scores. This may, at first, seem counter-intuitive, but consider a document that contains both the words language and anaphora. Anaphora is certainly the rarer word, and if it occurs in this document, there must be a reason – probably that the document is about anaphora.
To institute a WAIS search on a Unix platform, you can type
waissearch <searchterm>
e.g.,
waissearch anaphora
at the root prompt. If your machine has a WAIS client, this will connect you to the default host machine and search the default database. If you want to search another database, you must specify the host machine and database, following the flags -h (host) and -d (database), respectively. So if you want to search for the word ‘syntax’ in the Welsh database maintained on the sunsite.unc.edu host, you would type:
	waissearch -h sunsite.unc.edu -d Welsh syntax
One of the problems with WAIS is that for waissearch to query a WAIS index, someone must already have gone to the trouble of producing such an index. To date, we have not found many WAIS-indexed databases relevant to linguistics. Another problem with using WAIS is that only Mosaic among the graphics Web browsers can handle WAIS addresses. Using other Web browsers, you have to contact WAIS servers indirectly, by going through a Web-to-WAIS search facility or using a Web-to-WAIS gateway. For these reasons, we find WAIS to be a less useful search facility than Gopher or Archie.
News
News is not so much a search facility as a place where computer users can interact, and thus find information by asking questions, or by downloading files individuals have posted to News. News works somewhat differently from the other Internet utilities, in that it uses multiple servers, as well as a user-oriented client. The major News facilities are USENET and ClariNet. Each is a distributed network, which means that news items sent to one USENET or ClariNet server are “propagated,” or distributed by the server to all the other servers which act as clearinghouses for USENET or ClariNet news items. To read News, you must have access to a news client and a news server which is part of the News network. The News server may also serve as a central site for news items sent to purely local newsgroups (e.g., groups advertising rental property or jobs in the area). Because all news servers organize newsgroups in the same way, news items originating at ClariNet, at USENET, or a local server can be treated the same way by the client; that is, they can be displayed on your screen as part of the same hierarchical list.

ClariNet is a News system which takes its news items from wire services such as The Associated Press or Reuters and organizes them into newspaper-like categories, e.g., World News, Entertainment, Syndicated Columns. A subject listing of ClariNet Newsgroups can be FTP’d from:
 ftp.clarinet.com/clarinet_info/quickref

USENET is the very large set of newsgroups which take their news items from individual posters. When an individual posts a message to a USENET newsgroup, a client at the local site sends these messages to the server which distributes (“propagates”) the message to other servers which handle this newsgroup. Each server acts as a distributor, or newsfeed, for a chosen set of newsgroups. The systems administrator at each site decides which groups to make available to its clients. Your local News server may get newsfeeds from one server or from many different servers, depending on the diskspace available and the predilections of your systems administrator. (Some local sites – e.g., universities with timid administrators – filter out the more risqué USENET newsgroups.)
If you wish to read News, you start up your local client, which is called a newsreader. This newsreader goes to the local server and asks for a listing of the newsgroups which are available. Because there are thousands of newsgroups (USENET alone has thousands), many newsreaders only list the groups to which you have previously subscribed. If you are a first-time user, however, the newsreader will ask if you want a listing of all the newsgroups available to your local server. Retrieving this list can take a considerable time, but it may be the only way for you to find groups you want to subscribe to. When the client displays the list of available newsgroups, you select one to read, and the client goes back to the news server for a list of headers of all relevant news items. When you select a news item to read, the newsreader goes back to the news server once again to get the item you requested.
There are many different kinds of newsreaders. If you read News from a Unix account on a mainframe, you may activate your newsreader by typing rn (‘read news’), trn (‘threaded rn’) or even nn (‘no news’ – a name spawned by the saying “No news is good news”). � REF _Ref350572022 * MERGEFORMAT �Figure 5� below is part of the screen we got when we typed trn at a Unix prompt.

Figure 5 about here

Note that in � REF _Ref350572022 * MERGEFORMAT �Figure 5� the bottom of the screen tells us how to subscribe to groups using the syntax ‘g’ followed by the newsgroup name. Then it tells us there are 48 unread news items in the newsgroup news.announce.newusers and asks us if we want to read these. We don’t. So it tells us that we are at the end of our subscribed newsgroups and asks ‘What next?’ At that point we subscribe to the newsgroup sci.lang.
In addition to Unix news clients like trn, there are clients which can be run on your personal machine. These are often much easier to use than a mainframe newsreader, since they often provide menus of permissible operations (reply to the newsgroup, save the news item as a file, etc.), present newsgroup choices as an organized list, allow you to “thread” (i.e., to group together) news items having the same topic or subject line, and allow you to use a mouse.
Furthermore, later versions of most Web browsers, e.g., Netscape 2.0 or later, can function as newsreaders, giving you all the advantages listed above, plus the ability to view pictures contained in news items, and even to play sound files. However, a newsreader must have access to a local news server; if your Web browser can not read News, it may be because it lacks such access.
Newsgroups are usually presented as hierarchical lists, because News is organized into categories and sub-categories, ostensibly by subject. For linguists the best metaphor for this arrangement is the tree. Every newsgroup is dominated by a node that includes all groups whose topics are, in the opinion of the organizers of News, sub-categories of the node topic. In the name of the newsgroup, each node is separated from its dominating node by a dot. So, for example, a newsgroup called rec.art.folk would be a group on the recreational activity of art which deals specifically with folk-art.
The hierarchical organization of News, it may be observed, follows its own rules. The dominating node alt for ÔalternativeÕ (e.g. alt.abortion.recovery, alt.arts.ballet), for example, indicates not so much similarity of content, as an implication of similarity of attitude on the part of those who post messages there. Groups dominated by alt tend to be groups where anything goes. The content of these groups is hard to predict, and ranges from the quirky to the frankly obscene. Groups dominated by soc (for ‘social’), on the other hand, tend to be more serious. Groups dominated by sci discuss scientific issues. This is where the major linguistic newsgroup, sci.lang, resides.�	To some degree News fills the same role as email discussion lists, but it has important differences. For example, the reason why so many people like News is that reading News is a maintenance-free occupation. Subscribing to an email discussion group is not. When you receive email you have to do something with it, even if only delete it. With News, if you fail to read anything for weeks, all that will happen is that you will get behind in the discussion. Items you failed to read will eventually disappear all by themselves. You can, what is more, move freely between groups, reading a little here, dropping the group for a while, and going back later if you wish. It’s easy to stumble across a newsgroup on an interesting topic (your newsreader, after all, will provide a list), post a few messages to it, and move on.
The easy availability of newsgroups has, however, some bad effects. ItÕs as easy for the uninformed as for the expert to post a message on a topic, and thus newsgroups tend to contain a very mixed set of items. Sci.lang, for example, supposedly treats the scientific study of language. In practice, however, it mixes news items reflecting “scientific study” with news items of awe-inspiring linguistic naiveté. (This can also be true of mailing lists, of course; but mailing lists on specific topics do require some knowledge and initiative to find, qualities presumably lacking in the “drive-by” poster.) Newsgroups are also hard to keep focused and are often subject to flame-wars, since personal connections between posters are tenuous and, if a dispute arises, no one has the authority to intervene.
World Wide Web
Each of the Internet functionalities discussed so far does only a few, specific things: mailers send and receive mail, FTP servers transfer files, Gopher servers find information, and so on. The World Wide Web, however, is different. It is an Internet functionality which can do something none of the other utilities can: it can do everything.
What is the Web?
The Web does not exist as a concrete entity. ‘Web’ is a metaphor for the multiplicity of links effected by the new technologies called Web browsers and Web servers. Unlike a Gopher client, which requires a Gopher server on the other end, a browser can interact with (almost) any kind of server, as long as it knows the server type. Thus the information it exchanges can also be of virtually any kind: a text, a photograph, a sound, a movie, a program, or a mail-message.
However, the facility which has made the Web what it is is the use of hypertext as a way of accessing Internet facilities. And the HTTP server, i.e., a server running HyperText Transfer Protocol, is the facility that has come to be known as a ‘Web server.’ As most users know by now, hypertext is text which has links to other texts embedded in it, so that the user can select a link with a mouse or a keystroke and ‘go to’ the linked text. On the World Wide Web, the links are called URL’s (Universal Resource Locators); and they have a three-part syntax:
a) The kind of resource being accessed. Is it an HTTP server, a Gopher server, a WAIS service, an FTP site, Telnet site or a News group? Each of these has a different prefix: HTTP, GOPHER, WAIS, FTP, TELNET and NEWS.
b) The address of the service, in domain name form, preceded by a colon and two slashes. If a port has to be designated, it follows this, preceded by a colon. The address ends with a slash.
c) The path to the right file. This will include the name of each subdirectory in the path, followed by a slash, and the filename if you know it.
Thus, if a file called default.html exists inside the directory files. and is present on a machine called engserve.tamu.edu which has an HTTP server and uses Port 8000, the correct URL would be
http://engserve.tamu.edu:8000/files/default.html
A telnet connection would appear as follows:
TELNET://engserve.tamu.edu/
Hypertext
Even though you can use a browser to access a Gopher server and retrieve plain text or an FTP server and retrieve files, it is most likely that you will want to access an HTTP server and retrieve documents in hypertext, because it is hypertext documents which contain links �to other documents. If, for example, your browser displays a hypertext document that lists the data sources collected by The LINGUIST List
URL: http://www.emich.edu/~linguist/
and you decide you want to see the list of sites dedicated to specific linguistic topics, you select that link and retrieve another hypertext document, this one containing links to these sites (� REF _Ref350572057 * MERGEFORMAT �Figure 6� below).

Figure 6 about here

Selecting a link to a specific site, e.g., Lexical Functional Grammar, will retrieve yet another hypertext document, this one listing (and potentially linking you to) information about LFG (� REF _Ref350572091 * MERGEFORMAT �Figure 7� below). It is this ability to link one text to another which has caused the set of protocols we are talking about to be called a “web.”

Figure 7 about here

Web Browsers
Web browsers, which run on the user’s own machine, are the key Web technology. There are a number of browsers available for different platforms. There are text browsers, such as Lynx, which cannot handle graphics but which have the advantage of not requiring that the machine run TCP/IP. Text browsers will work over a serial line, i.e., one which transmits series of characters, not data in Internet Protocol. This means that you can use a text browser with your ordinary modem and phone line and very basic software. However, you won’t be able to take advantage of the full capacity of the Web. For that, you need a graphics browser. The earliest graphics browser was "NCSA Mosaic," but it has been largely superseded by browsers such as Netscape and Explorer. Both Netscape and Explorer are available by anonymous FTP. The addresses are:
ftp.netscape.com
and:
ftp.microsoft.com
Ftp to one of these sites as described in section � REF _Ref350571799 \n �3.2� above, log in using ÔanonymousÕ and download the browser version which is appropriate to your machine. Netscape is free to educators, though others must pay a small fee. Explorer is free to everyone.
Browsers not only know how to ask different kinds of servers for information, they know what to do with the different types of information they retrieve. If the file is a graphics file, the browser will display it on screen as a picture. If the data is text, the browser will display it in a text window. If the connection is to an FTP port, the browser will save the data as a file. This means that users can do highly sophisticated things without ever needing to learn the specific technologies operating behind the scenes.
Browsers themselves are very easy to learn. To use a browser, all you need to know is how to run the browser software, how to distinguish a hypertext link from other text (by color, underlining, or shading), and how to open links (by selecting them with a mouse or the keyboard). For persons with graphics interfaces (MAC, Windows), browsers are the �epitome of ‘point-and-click’ technology: you open a browser by clicking on its icon and you access its functions and links by clicking on menu items or highlighted text.
However, in order to use a graphics browser like Netscape, Explorer or Mosaic, and thereby enjoy all the features of the Web, your machine must have an IP connection (e.g., TCP/IP, Ethernet), or run software using a protocol which makes the other machine think it does. PPP (Point to Point Protocol) and SLIP (Serial Line Internet Protocol) are protocols that fool the Internet into thinking that your personal computer is an Internet machine. However, they can be tricky to install. Many universities are now giving out an Internet connectivity package which includes MacTCP, TCP/IP, or Winsock and which – theoretically, at least – installs itself using an easily-run setup program. If such a package is available to you, by all means use it.
However, you should know that you will need a good deal of memory (at least 8 MB) and a fairly fast connection. Otherwise Web access can be painfully slow. The Web makes no distinction between different kinds of text; and some of these “texts” – like movies, pictures, and sounds – are very bulky. A single short computer movie is the size of all of Jane Austen’s combined works. To move this kind of information around at all requires at the minimum a high speed modem. An ethernet connection is even better.
One final comment: at the present moment virtually all World Wide Web pages do not display the kinds of odd characters linguists use, simply because the main browsersÑNetscape and ExplorerÑcan't display them. This is, again, a font problem, as was discussed above. Until Unicode browsers are common, the problem will continue. At the moment, there are starting to be Unicode browsers, e.g. the Tango browser. But these are rare, and few people are writing pages for them.
Writing a Web Page
One of the reasons that the Web has been so successful is that it’s very easy to set up a Web site. You have to have a certain amount of know-how to make information available on the Internet via Gopher or WAIS or ARCHIE, but setting up a Web page with all the hypertext links you want is so easy that individuals who have absolutely no computational expertise can do it. All you need is an account on a machine where a Web server is running and some introduction to a simple markup language called HTML.
If youÕre a student or employee of a university, itÕs very likely that you have access to an HTTP server through the same account as you use for email. Even if such a server is not running on your own machine, itÕs probably running on other university machines, and you can request an account on one of these for your Web page files. In that case, all you have to do is create a hypertext document and store it as a file in a directory which is accessible to the server.
To create a Web page, the first thing you should do is download a Web browser like Netscape or Explorer, since the browser will help you download all the additional software you need. See section � REF _Ref350571648 \n �5.3� for instructions.
Next you will need to learn how to write HTML (HyperText Markup Language), so you may wish to download the hypertext primer available at the URL:
http://www.ncsa.uiuc.edu/demoweb/html-primer.html
Just access this URL through your browser and save it as a file on your own machine. (Your browser will probably have a “Save as” option in the File menu.) Then you can print it out and refer to it as you mark up your Web page. The grammar of HTML is very easy to learn, but – if you’re like us – you may have trouble remembering the vocabulary items and be grateful for a glossary.
HTML Basics
In HTML, the analogue of a vocabulary item is the tag. A tag consists of a left angle bracket (<) followed by the name of the tag, e.g. B for bold, or I for italic. A right angle bracket preceded by a slash (/>) closes almost all of the tags. The two exceptions are the <P> tag, which marks the end of a paragraph, and the
 tag, which marks a line break.
Tags are instructions to the Web browser. Most of these instructions tell the browser how to format the page it is displaying. So, for example, in the markup below
 This is boldface.
the tag tells the Web browser to bold the text until it finds the , when it will stop bolding the text. (Case never matters inside a formatting tag.� So and would work just as well.)
Titles are marked by the <TITLE> tag, and end with the </TITLE> tag. Every Web page should have a title, as this is what is displayed at the top of the window when the page is read with a browser. Headings are indicated by tags beginning with H, e.g. <H1> </H1>, <H2> </H2>. The larger the number to the right of the H, the smaller the heading. Lists of various kinds (bulleted, indented, numbered, etc.) can also be formatted by using appropriate tags.
Consider the following HTML text:
<TITLE>This is an Example of HTML</TITLE><H1>Now we have a heading</H1>Now we have some text, followed by a paragraph break<P>And then another<P>And then some bold text
This will display in Netscape as in � REF _Ref350572126 * MERGEFORMAT �Figure 8�:

Figure 8 about here

In addition to formatting commands, you will almost certainly wish to add links to your document, so that the user can move from your page to related files or documents. Links are added by surrounding the address of the resource and the words you wish to use as a link with anchor tags. The browser will indicate that the selected words are a link by changing their color and/or underlining them.
The hyperlink anchor tag always starts with <A . It is followed by HREF, which tells the browser that this is a Hypertext REFerence. Then comes an equals sign, then the quoted address of the file you wish to link. If the file is local, and in the same directory, the filename will serve as the address, e.g.

If the file is on a remote system, however, you must use the URL scheme (see section � REF _Ref350583560 \n �5�) to specify the file.
After specifying the address, you type the words you wish to be highlighted in your text to indicate the link, i.e., the words you want the user to “click” on. Then you close the link with , as in:
This is a link.
Mounting Your Web Page
Once your page is furnished with links and formatted to your liking, you simply save it as a file in the proper subdirectory. If it is your main page, you should give the file a name that the Web server recognizes – usually index.html or default.html – so that it will display this page first when someone visits your site with a browser.
The directory to which you save the file can be a subdirectory within your own account, but it too must be a directory that the HTTP server can read, so you may have to ask your local help desk administrator what the directory should be called, and how to set protections so that outsiders can read it. Most HTTP servers are programmed to read directories called either www or public_html.
For example, if you have a university account with the address
	foobar@sloppy.emich.edu
and the machine called ‘sloppy’ is running a Web browser, you can place place your Web page in a subdirectory of this account, perhaps one called /usr/local/foobar/www/ . Anyone wishing to read the page with a Web browser would access it at the URL:
	http://sloppy.emich.edu/~foobar/
By convention, the main Web server at each site has the alias www. So, if ‘sloppy’ houses the main Web server, your page can also be accessed as
	http://www.emich.edu/~foobar/
 This URL tells the browser to contact the machine at Eastern Michigan U. which is running the primary WWW server and to go to the WWW-accessible directory in the account of “foobar.” The server will find the file called index.html in this account and – if the HTML markup was done correctly – display it with proper formatting and live links.
Setting up a Web Server
If you do not already have an account on a machine running an HTTP server, you may be required to set up a Web server in order to make your Web pages available to the public. If you have a certain amount of computational experience, you will find setting up a Web-server only about as complicated as installing a word-processor. However, this chapter is intended for beginners, so we will not go into this process in detatil.
Many Web servers are free; and you can find a list of available servers at a number of different sites on the Web, e.g.:
http://www.uiuc.edu/help/servers.html
http://www.hypermall.com/tk/http.html
Note, however, that running an HTTP server on your own machine requires that:
your machine be directly connected to the Internet. If you have an Ethernet connection, you automatically have an Internet connection too.
your machine be running all the time. Once you set up an HTTP server, youÕll receive connections from all over the world at all hours of the day.
If you decide to set up a Web server, we recommend that you consult a book on the subject; the most helpful book we know is an O’Reilly and Associates Nutshell book called Managing Internet Information Services (Liu et al, 1994).
Conclusion
In this chapter we have tried to outline the nature of the Internet, and how you, as a linguist or linguistics student, can take advantage of it. In this space, it has been impossible to do more than introduce the 8 Internet technologies we have discussed; but we have tried to provide enough information to allow you to decide which of these are likely to be most useful to you. The Appendices to this chapter list resources which will allow you to learn more about the ones you choose to investigate further.
Many of the resources are themselves on the Internet, so we urge you to sit down at the computer and try to find them. Simply ‘surfing’ the Net is probably the best way to learn – certainly, a lot of the information in this chapter was acquired that way; and it was (dare we say it) a lot more fun than going to a library. This is fortunate, since we all need to continue exploring the Internet: so much valuable linguistic information now appears there that we cannot ignore it for long without losing contact with important research.�Appendix
Part I. Books

Krol, Ed. 1994. The Whole Internet. Sebastopol, CA. OÕReilly & Associates. There is an Academic Edition adapted into a textbook by Bruce Klopfenstein. One of the best books for those who want a good introduction to how the Internet works. There is considerable detail here, but it's very clearly written.
Liu, Cricket, Jerry Peek, Russ Jones, Bryan Buus, and Adrian Nye. 1994. Managing Internet Information Services. Sebastopol, CA: OÕReilly & Associates. A more advanced book for those who want set up their own site. It will teach you how to set up Web servers, e-mail lists and ftp sites.
Miller, D., S. Fowell, N. Ford. Forthcoming. Information Skills in an Electronic Age: The Student's Handbook. Routledge. A book aimed at the particular needs of students who need to use the Internet as part of their education and research, rather than set up services.
Quarterman, John S. 1995. The Matrix: Computer Networks and Conferencing Systems Worldwide. Bedford, MA: Digital Press. This is the standard handbook on the Internet. It is bulky, and can be very complex, but it is well worth reading nevertheless.
Unicode Consortium. 1996. The Unicode Standard: Version 2.0. Reading, MA: Addison-Wesley. (See also http://www.unicode.org.) The standard reference work on Unicode, the character encoding system which will allow linguists (and a whole lot of other people) to use any script they wish on the Internet.
Part II. Software
Web Browsers
Internet Explorer: Produced by Microsoft, this is one of the fuller featured browsers available. http://www.microsoft.com/msdownload/default.asp
Netscape: Another full-featured browser, and, at the moment, probably the most common. It has become to a large degree the standard against which other browsers are matched. http://www.netscape.com/
Tango: One of the first of a new wave of browsers whose native character encoding is Unicode. This makes it particularly interesting to linguists, since it makes the display of unusual characters possible. http://www.alis.com/index.en.html
HTML Editors
Netscape Gold: This is really the Netscape browser with editing software added on. The Windows version is better than the Mac version, but both are good ways to begin writing HTML. You don't need to know a lot of HTML with this editor. It will do much of the work for you. http://www.netscape.com/
Part III. Network Resources:
A Beginner's Guide to HTML: One of the better guides to writing HTML on the Web. http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrimer.html
Deja News: A quick and easy way to read News without having access to a news server. It will also allow you to search all news postings and retrieve those you're interested in. http://www.dejanews.com/
E-Mail addresses of linguists: A service of the LINGUIST list. This lists most of the ways you can find a linguist's address, and includes search facilities for some of these. http://linguistlist.org/addresses.html
Killersites: Creating good Websites is not as easy as it seems. This site attempts to explain what good pages should look like http://www.killersites.com/core.html
Library Catalogs on the Internet: A good database. http://library.usask.ca/hywebcat/
The LINGUIST List: A good site for starting with when you try to track down linguistic information on the Web. http://www.linguistlist.org/
Searchable list of Mailing Lists: If you want to find a mailing list in some particular area, this is a good place to do it from. http://tile.net/lists/
SIL Another good site from which to find good linguistic information. Includes the famous Ethnologue, a listing of all the World's known languages. http://www.sil.org/linguistics/linguistics.html
Virtual Library in Applied Linguistics: An excellent, well-maintained site for information on this topic. http://alt.venus.co.uk/VL/AppLingBBK/
The World Wide Web Consortium: If you want to find out more about how the World Wide Web works, this is the place to go to. http://www.w3.org/pub/WWW/TheProject.html
��

Figure 1�
Aristar{7}%>archie linguist
Host freebsd.cdrom.com
 Location: /.2/SimTel/msdos
 DIRECTORY drwxr-xr-x 1024 Aug 19 1994 linguist
Host ftp.clarkson.edu
 Location: /pub/simtel20-cdrom/msdos
 DIRECTORY dr-xr-xr-x 2048 Jan 14 1992 linguist
Host ftp.uga.edu
 Location: /pub/msdos/mirror
 DIRECTORY dr-xr-xr-x 512 Apr 7 1994 linguist
Host ftp.wustl.edu
 Location: /systems/ibmpc/msdos
 DIRECTORY drwxr-xr-x 8192 Dec 21 1993 linguist
Figure � SEQ Figure * ARABIC �2���
Figure � SEQ Figure * ARABIC �3�
��
Figure � SEQ Figure * ARABIC �4��

hdry-ut{12}%>trn
Trying to set up a .newsrc file -- running newsetup...
Welcome to trn. Here's some important things to remember:
 o Trn is an extension of rn and has a similar command syntax.
 o Typing a space to any prompt means to do the normal thing. You could
 spend all day reading news and never hit anything but the space bar.
 o If you have never used the news system before, you may find the articles
 in news.announce.newusers to be helpful.
 o Please consult the man page for complete information.

Creating /home/uts/li/ligt/hdry/.newsrc to be used by news programs.
Done.
To add new group use "a pattern" or "g newsgroup.name". To get rid of
newsgroups you aren't interested in, use the 'u' command.
Unread news in news.announce.newusers 48 articles
****** 48 unread articles in news.announce.newusers -- read now? [ynq]
****** End of newsgroups -- what next? [npq] g sci.lang
Newsgroup sci.lang not in .newsrc -- subscribe? [ynYN]
Put newsgroup where? [$^Lq]
****** 472 unread articles in sci.lang -- read now? [ynq]
****** End of newsgroups -- what next? [npq]
Figure � SEQ Figure * ARABIC �5��
�
Figure � SEQ Figure * ARABIC �6��
�

Figure � SEQ Figure * ARABIC �7��
�
Figure � SEQ Figure * ARABIC �8�

� One of the authors of this chapter had a paper accepted in 1991. It did not appear in print until 1995. And this is probably not at all unusual.
� For a more extensive overview of the Internet and how it works, we refer readers to Liu et al. 1994, from which much of the following information is drawn.
� IP numbers, then, are ordered the opposite way to domain names. The leftmost octet of an IP number indicates the widest network, whereas the widest domain is indicated by the rightmost portion of a dotted domain name.
� It does matter in addresses, e.g. filenames, when talking to a Unix machine. So, when enclosing material within anchor tags, make sure that upper and lower case are quoted exactly.

Using Computers in Linguistics

Dry and Aristar: Internet	

� PAGE �60�

		� PAGE �61�

Dry and Aristar: Internet
	

		� PAGE �103�

�PAGE \# "'Page: '#'�'" �Page: 16���revised to here. Add virtual lib. ref?

