BONUS - 5 POINTS

Find the points on the curve $x^{2}+x y+y^{2}=7$ where (a) the tangent is parallel to the x -axis and (b) where the tangent is parallel to the y-axis.
SOLUTION
With all this talk about tangent lines, we need the derivative of the implicit curve. So....
$x^{2}+x y+y^{2}=7$
$2 x+y+x y^{\prime}+2 y y^{\prime}=0$
$y^{\prime}(x+2 y)=-y-2 x$
$y^{\prime}=\frac{-y-2 x}{x+2 y}$
(a) NOW, where is the tangent parallel to the x -axis? We need to find the points on the curve where the derivative is equal to zero. For this to be true, the numerator of the derivative must be zero, so:
$-y-2 x=0$
$y=-2 x$

We can use this and plug it back into the original equation to eliminate the variable y.

$$
\begin{aligned}
& x^{2}+x(-2 x)+(-2 x)^{2}=7 \\
& 3 x^{2}=7 \\
& x= \pm \sqrt{\frac{7}{3}}
\end{aligned}
$$

Now use the relationship $y=-2 x$ to find the y coordinates which turn out to be, $y=\mp 2 \sqrt{\frac{7}{3}}$ so the points on the curve we desire are $\left(\sqrt{\frac{7}{3}},-2 \sqrt{\frac{7}{3}}\right)$ and $\left(-\sqrt{\frac{7}{3}}, 2 \sqrt{\frac{7}{3}}\right)$.
(b) This part is very similar, but now we need to find where the tangent is parallel to the y-axis, that is, where it is vertical. Vertical tangents yield undefined slopes, so we set the denominator of the derivative equal to zero.
$x+2 y=0$
$x=-2 y$
We could repeat the process from (a) to find the points, but if we look closely we notice a similar relationship between x and y , this time the x -coordinate is the opposite of twice the y -coordinate, so this time our points are $\left(2 \sqrt{\frac{7}{3}},-\sqrt{\frac{7}{3}}\right)$ and $\left(-2 \sqrt{\frac{7}{3}}, \sqrt{\frac{7}{3}}\right)$.

