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X-ray Spectroscopy 
A Critical Look at Past Accomplishments 

and Future Prospects

James Penner-Hahn      jeph@umich.edu

1. Fundamental principles of x-ray – matter 
interactions:   x-ray absorption and emission

2. Principles of EXAFS and XANES data 
analysis

3. Applications of x-ray spectroscopy to 
inorganic chemistry

4. Advanced methods in x-ray spectroscopy

Lecture plan
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1. Techniques for studying metals

2. Interactions of x-rays with matter

3. XAS – EXAFS and XANES

4. Data collections
a) Generation of x-rays

b) Measurement of x-rays

c) Transmission vs. Fluorescence measurements

d) Sensitivity

Fundamental principles

Techniques for studying metal 
sites (proteins, materials, etc.)

• UV-visible spectroscopy
• EPR spectroscopy
• Magnetic susceptibility
• MCD

Require open d shell

Requires I=1/2 nucleus

Requires crystals• X-ray crystallography
• NMR spectroscopy

• X-ray spectroscopy
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http://www.coe.berkeley.edu/AST/sxreuv



4

Absorption of x-rays by Pb
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http://www.ixasportal.net/ixas/

International XAFS Society
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X-ray absorption spectroscopy
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Information Content of EXAFS

• Bond length ± 0.02 Å (accuracy)

• Bond length ±0.005 Å (precision)

• Coordination number (lower limit) ± 1 

• Ligation type (Z) ± 10

Rmax < ~ 4 Å

Scott, R. A. "Measurement of Metal-Ligand Distances by 
EXAFS" Methods Enzymol. 1985, 117, 414-459.

Teo, B. K. EXAFS:  Basic Principles and Data Analysis; 
Springer-Verlag: New York, 1986.

Scott, R.A., “X-Ray Absorption Spectroscopy” in Physical 
Methods in Bioinorganic Chemistry, Que, L. (Ed)., 2000, 
University Science Books.

Penner-Hahn, J.E., “X-Ray Absorption Spectroscopy”, in 
Comp. Coord. Chem. II, Vol. 2, 2004.

Levina A, Armstrong R.S., Lay P.A., “Three-dimensional 
structure determination using multiple-scattering analysis 
of XAFS: applications to metalloproteins and 
coordination chemistry” Coord. Chem. Rev. 2005, 249, 
141-160.
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Dependence of XANES on Oxidation State
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NiN4 vs NiS4

NiN6 vs NiS6

NiN4; Td vs D4h

Advantages of XAFS

Direct structural determination for:
• Any form of matter
• Any isotope
• Any spin state
Direct determination of oxidation state
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•Bulk spectroscopy (average structure)
•Little angular information
•Gives only local structural information
•Limited sensitivity

•Requires synchrotron x-ray source

Disadvantages of XAFS

http://learntech.uwe.ac.uk/radscience/x-ray_tube
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Bremsstrahlung
radiation

Synchrotrons 
produce intense, 
tunable x-ray 
beams
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http://ssrf.sinap.ac.cn
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Detection of x-rays

X-rays are ionizing radiation – need to 
collect (and count) ionizations

X-ra y
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Transmission measurements

t sample thickness (cm)
 absorption coefficient (cm–1)
m mass absorption coefficient (cm2g–1)
 Density (g cm–3)

Beer-Lambert law  I0=incident, It=transmitted
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Absorbance

X-ray absorption coefficients

http://csrri.iit.edu/periodic-table.html

http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html
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http://csrri.iit.edu/periodic-table.html
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Absorbance is great for 
concentrated samples, 
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X-ray Fluorescence
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X-ray fluorescence spectra give 
element sensitivity
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Self-absorption

Reduces to If X if t << 1 (thin)

Goulon J, et al.  “On Experimental Attenuation Factors Of The 
Amplitude Of The EXAFS Oscillations In Absorption, Reflectivity And 
Luminescence Measurements”, J de Physique 43, 539-548 1982
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Only if X << B (dilute)
Fluorescence excitation spectra only give 
accurate X if samples are thin or dilute.  

Otherwise, need to correct.

Waldo GS, Carlson RMK, Moldowan JM, Peters KE, Penner-Hahn JE 
“Sulfur Speciation In Heavy Petroleums - Information From X-ray 
Absorption Near-edge Structure “ Geochim Cosmochim Acta  55 801-
814 (1991)
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If samples are not either thin or 
dilute, will have self-absorption

Effect of self-absorption

Pickering IJ, et al. “Analysis of sulfur biochemistry of sulfur bacteria using X-ray 
absorption spectroscopy” Biochemistry 40 8138-8145 (2001)
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Self-absorption

If a sample gives a reasonable transmission 
signal, it is too concentrated to measure by 
fluorescence (unless sample is very thin)

Signal/Noise concerns in XAS

Transmission ion-chambers – typical 
currents ≥10 nA ~ 1010 electrons/s 
Negligible noise from counting 
statistics.

Important noise sources:  electronic, 
microphonic, beam problems (below)

Counting statistics – uncertainty ~ (counts)½

If there is no background, S/N= (counts)½

Typical fluorescence 104 sec–1 to 105 sec–1
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Sensitivity
EXAFS amplitude falls of  1/k3

10% effect at k=2 Å–1; 0.03% at k=14 Å–1

For EXAFS S/N=3 at 14 Å–1 need 
absorption S/N=3/0.0003=104

Therefore need 108 counts at k=14 Å–1

What is required to have 
108 fluorescent photons

Incident flux  2·1013 sec–1 in 10–8 m2

Fluorescence yield  0.5  need 
absorbance of 10–5 to give 108 fluorescent 
photons in 1 second

Absorbance = 3·104 barns/atom
= 3·10–16 ·N

Need N  3·1010

50 fmole, 50 M if sample is (100 m)3
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Reality
Detected solid angle is 1-5% (i.e., 106 sec–1)
but – count times of 100 sec/pt are realistic 
total measurement time ~6 hrs (vs. 3 minutes)

However
Effective count rate is often detector-limited:  
if scatter:fluorescence is 100:1, Nmax~104

(102-fold lower than optimum).

• Solids
– If absorbance of element of interest > background 

absorbance use transmission
– If absorbance of element of interest << background 

absorbance use fluorescence
– Samples need to be optically thin – often requires 

dilution

• Solutions
– If concentrated, treat like a solid
– If dilute (negligible edge jump) use fluorescence
– Typical limits

• ~ 100 M Zn in 50 L aqueous solution (5 nmole)
• ~1.0 mM V  in 10 L aqueous solution (10 nmole)
• 10 M Mo in 200 L aqueous solution (2 nmole)
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Bragg’s Law
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Double-crystal 
monochromator

Energy resolution
 sin2 dn 

Angular divergence gives 
spread in energy.  Vertical 
slits decrease , and thus 
E.

For many 3rd generation sources, 
angular divergence of beam is 
small compared to intrinsic 
width of reflection
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Energy calibration

 sin2 dn 
Want to know E to ~0.1 eV (1 part in 105 )
Accurate absolute energy determination is 
hard.  Typically, settle for precise relative 
energy.
For absolute calibration, see:

Pettifer RF, Hermes C “Absolute energy calibration of x-
ray-radiation from synchrotron sources” J Appl 
Crystallogr 18, 404-412 (1985)

Internal energy calibration
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Harmonic contamination
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Experimental consequence of harmonic contamination

pinholes and self-absorption cause similar effect –
amplitudes are too small
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“Monochromatic” 
beam is not really 
monochromatic, due 
to harmonic 
contamination

Harmonic rejection mirror
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Fluorescence Detectors

•Energy resolving
•Energy dispersive – Ge or Si(Li)
•Wavelength dispersive
•Exotic

•Non-energy resolving
•Ion chamber
•PIN diode

Energy-dispersive detectors

http://www.canberra.com/products/491.asp
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Solid-state detectors have relatively 
low maximum count rates

http://www.xia.com/AppNotes/DXP_Pile.pdf

Wavelength-dispersive detectors
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Reasonable solid angle results in low 
resolution, but unlimited count rate
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Z-1 element functions as 
low-pass filter, but filter fluorescences
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Soller slits + Z-1 filter improve 
fluorescence

Ion chamber


