X-ray Spectroscopy

A Critical Look at the Past Accomplishments and Future Prospects

James Penner-Hahn jeph@umich.edu

Room 243

Monday – Wednesday 3-5 PM and by appointment http://www.chem.usyd.edu.au/~penner_j/index.htm

Lecture plan

- 1. Basic Physical Principles
- 2. Practical aspects of x-ray absorption
- 3. Data analysis
- 4. Near edge structure
- 5. Spatially and temporally resolved methods
- 6. Exotic x-ray spectroscopies

Grading

- Participation 20%
- Draft research proposal 30%
- Final research proposal 50%

Original

- •Feasible
- •Well presented

Proposal forms and guidelines at

http://www-ssrl.slac.stanford.edu/users/user_admin/ xray_vuv_proposal_guide.html

Proposal body – not more than 5 pages

- A. DESCRIPTION OF EXPERIMENT
 - I. Background
 - II. Previous results III. Proposed Experiments
 - IV. Literature cited
- B. PREVIOUS EXPERIENCE WITH THE
- TECHNIQUES AND FACILITY
- C. DETAILED SAFETY CONCERNS
- D. EQUIPMENT DEVELOPMENT SCHEDULE
- E. RESOURCES FOR PROGRAM PROJECT

Techniques for studying metal sites in proteins

- UV-visible spectroscopy
- EPR spectroscopy
- Magnetic susceptibility
- MCD
- NMR spectroscopy
- Requires I=1/2 nucleus

Require open d shell

- X-ray crystallography
- Requires crystals
- erjournogrupnj R
- X-ray spectroscopy

ement	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M ₁ 3s	M2 3p1/2	M3 3p3/2	M4 3d3/2	M ₈ 3d ₈
1.H	13.6								
2 He	24.6*								
3 Li	54.7*								
4 Be	111.5*								
5 B	188*								
6C	284.2 ^b								
7 N	409.9*	37.3*							
80	543.1 ^p	41.6*							
9F	696.7*								
10 Ne	870.2*	48.5*	21.7*	21.6*					
11 Na	1070.8"	63.5	30.4"	30.5°					
12 Mg	1303.0	88.6*	49.6	49.2					
13 AI	1559.6	117.8*	72.9*	72.5*					
14 Si	1838.9	149.7*	99.8°	99.2 [*]					
15 P	2145.5	189*	136*	135*					
16 S	2472	230.9 ^b	163.6 ^a	162.5 ⁸					
17 CI	2822.4	270.2 ^b	202*	200 ^p					
18 Ar	3205.9 ^b	326.3 ^b	250.6*	248.4*	29.3*	15.9*	15.7*		
19 K	3608.4 ^b	378.6 ^b	297.3 [*]	294.6*	34.8*	18.3*	18.3*		
20 Ca	4038.5*	438.41	349.7	346.2"	44.3'	25.4	25.4		
21.5	4492.8	498.05	403.62	398.7*	\$1.18	28.38	28.38		
22 15	4066.4	560.00	461.20	453.95	59.70	22.65	22.65		
23.37	6465 1	626.20	\$10.87	612.10	66.20	32.0	32.0		
23.0	5403.1	606.7	517.8	674.10	24.16	13.2	57.2		
24 Cr	5989.2	093.7	283.8	374.1	74.1	42.2	42.2		
25 Mn	6539.0	769.1°	649.9	638.7	82.3	47.2	47.2		
26 Fe	7112.0	844.6'	719.9	706.81	91.31	52.7	52.7		
27 Co	7708.9	925.1°	793.3 ^c	778.1 ^c	101.05	58.9F	58.9F		
28 Ni	8332.8	1008.67	870.0	852.7	110.8	68.0F	66.2		
29 Cu	8978.9	1096.7	952.3	932.5	122.5	77.3	75.1 ^c		
30 Za	9658.6	1196.2*	1044.9*	1021.8*	139.8*	91.48	88.62	10.2*	10.1*

Center for Synchrotron Radiation Research and Instrumentation

http://www.csrri.iit.edu/

Synchrotron Radiation Related Links

- A list of <u>Web sites of interest</u> to the synchrotron radiation community. The <u>International XAFS Society XAFS Database</u>. Look up <u>McMaster X-ray data</u>. Look up <u>McMaster X-ray data</u>. (Alternate interface using HTML 3.0 tables.) <u>X-Ray WWW Server</u> (Uppsala, Sweden). <u>Feft home page</u> (Seattle, Washington). <u>UWXAFS Project</u> (Seattle, Washington). <u>Rigaku Miniflex Data Conversion Program</u>.
- .
- .

Scott, R. A. "Measurement of Metal-Ligand Distances by EXAFS" *Methods Enzymol.* 1985, *117*, 414-459.
Teo, B. K. *EXAFS: Basic Principles and Data Analysis*; Springer-Verlag: New York, 1986.
Scott, R.A., "X-Ray Absorption Spectroscopy" in *Physical Methods in Bioinorganic Chemistry*, Que, L. (Ed)., 2000, University Science Books.
Penner-Hahn, J.E., "X-Ray Absorption Spectroscopy", in Comp. Coord. Chem. II, Vol. 2, 2004.
Levina A, Armstrong R.S., Lay P.A., "Three-dimensional structure determination using multiple-scattering analysis

of XAFS: applications to metalloproteins and coordination chemistry" *Coord. Chem. Rev.* **2005**, *249*, 141-160.

MetE (cobalamin independent MetSyn) contains Zn

Zn is tightly bound Zn is required for activity Is Zn involved in reaction, or does it play a structural role?

