

Transmission measurements Beer-Lambert law I₀=incident, I_t=transmitted $I_t = I_0 10^{-\varepsilon C l}$ $I_t = I_0 e^{-\mu t}$ $I_t = I_0 e^{-\mu_m \rho t}$ t sample thickness (cm) μ absorption coefficient (cm⁻¹) μ_m mass absorption coefficient (cm²g⁻¹) ρ Density (g cm⁻³)

$$I_{F} = I_{0} \frac{\Omega}{4\pi} \varepsilon \frac{\mu_{X}(E)}{\mu_{T}(E) + \mu_{T}(E_{ff})} \left(1 - e^{-[\mu_{T}(E) + \mu_{T}(E_{ff})]_{F}}\right)$$
$$\mu_{T} = \mu_{X} + \mu_{B}$$
Reduces to $I_{f} \propto \mu_{X}$ if $\mu t << 1$ (thin)
If $\mu t >> 1$ (thick)
$$I_{F} \approx \frac{\mu_{X}(E)}{\mu_{T}(E) + \mu_{T}(E_{ff})} = \frac{\mu_{X}(E)}{\mu_{X}(E) + \mu_{B}(E) + \mu_{T}(E_{ff})}$$
Goulon J, et al. "On Experimental Attenuation Factors Of The
Amplitude Of The EXAFS Oscillations In Absorption, Reflectivity And
Luminescence Measurements", J de Physique **43**, 539-548 1982

$$\begin{aligned} & \frac{\text{Self-absorption continued}}{\mu_{X}(E)} \\ & \frac{\mu_{X}(E)}{\mu_{X}(E) + \mu_{B}(E) + \mu_{T}(E_{fl})} \approx \mu_{X}(E) \\ & \text{Only if } \mu_{X} << \mu_{B} \text{ (dilute)} \\ & \text{Fluorescence excitation spectra only give accurate } \mu_{X} \text{ if samples are thin or dilute.} \\ & \text{Otherwise, need to correct.} \end{aligned}$$
Waldo GS, Carlson RMK, Moldowan JM, Peters KE, Penner-Hahn JE "Sulfur Speciation In Heavy Petroleums - Information From X-ray Absorption Near-edge Structure " Geochim Cosmochim Acta 55 801-

814 (1991)

Self-absorption

If a sample gives a reasonable transmission signal, it is too concentrated to measure by fluorescence (unless sample is very thin)

Signal/Noise concerns in XAS

Counting statistics – uncertainty ~ $(\text{counts})^{\frac{1}{2}}$ If there is no background, S/N= $(\text{counts})^{\frac{1}{2}}$ Typical fluorescence 10⁴ sec⁻¹ to 10⁵ sec⁻¹

- Transmission ion-chambers typical currents ≥ 10 nA ~ 10^{10} electrons/s Negligible noise from counting statistics.
- Important noise sources: electronic, microphonic, beam problems (below)

Sensitivity

EXAFS amplitude falls of $\approx 1/k^3$ 10% effect at k=2 Å⁻¹; 0.03% at k=14 Å⁻¹ For EXAFS S/N=3 at 14 Å⁻¹ need absorption S/N=3/0.0003=10⁴ Therefore need 10⁸ counts at k=14 Å⁻¹

What is required to have 10⁸ fluorescent photons

Incident flux $\approx 2 \cdot 10^{13} \text{ sec}^{-1}$ in 10^{-8} m^2 Fluorescence yield $\approx 0.5 \rightarrow \text{need}$ absorbance of 10^{-5} to give 10^8 fluorescent photons in 1 second Absorbance = $3 \cdot 10^4$ barns/atom = $3 \cdot 10^{-16} \cdot \text{N}$ Need N $\approx 3 \cdot 10^{10}$

50 fmole, 50 μ M if sample is (100 μ m)³

Reality

Detected solid angle is 1-5% (i.e., 10^6 sec^{-1}) but – count times of 100 sec/pt are realistic \rightarrow total measurement time ~6 hrs (vs. 3 minutes)

However

Effective count rate is often detector-limited: if scatter:fluorescence is 100:1, $N_{max} \sim 10^4$ (10²-fold lower than optimum).

• Solids

- If absorbance of element of interest > background absorbance use transmission
- If absorbance of element of interest << background absorbance use fluorescence
- Samples need to be optically thin often requires dilution
- Solutions
 - If concentrated, treat like a solid
 - If dilute (negligible edge jump) use fluorescence
 - Typical limits
 - + $\sim 100 \; \mu M$ Zn in 50 μL aqueous solution (5 nmole)
 - + ~1.0 mM V in 10 μL aqueous solution (10 nmole)
 - + 10 μM Mo in 200 μL aqueous solution (2 nmole)

Energy calibration

 $n\lambda = 2d\sin\theta$

Want to know E to ~ 0.1 eV (1 part in 10^5) Accurate absolute energy determination is hard. Typically, settle for precise relative energy.

For absolute calibration, see:

Pettifer RF, Hermes C "Absolute energy calibration of xray-radiation from synchrotron sources" *J Appl Crystallogr* **18**, 404-412 (1985)

