Lecture 2.
Practical Aspects of X-ray Absorption

* Measurement of absorption
* Energy selection

* Artifacts (how NOT to measure the
right signal)

» Radiation damage

Detection of x-rays

X-rays are ionizing radiation — need to
collect (and count) ionizations
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Transmission measurements
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X-ray absorption coefficients
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Absorbance i1s great for
concentrated samples,
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1% metal

50 ppm metal

but not for dilute samples.
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Transmission is also sensitive to
background absorption
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Fluorescence
(what goes up must come down)
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Fluorescence excitation spectra
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Measure fluorescence intensity as
excitation energy is scanned

Fluorescence Detectors

*Energy resolving
*Energy dispersive — Ge or Si(L1)
*Wavelength dispersive
*Exotic
*Non-energy resolving
Jon chamber
*PIN diode
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Solid-state detectors have relatively
low maximum count rates
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http://www.xia.com/AppNotes/DXP_Pile.pdf

Energy-dispersive detectors
typically have high resolution
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Wavelength-dispersive detectors

Reasonable solid angle results in low
resolution, but unlimited count rate

-

Zn

¢t x 10'4)
2.2

Fluorescence

(counts se

‘s 85 8 75 7 65 6
Detector angle (degrees)

Non-energy resolving detectors
Z-1 element functions as

low-pass filter, but filter fluorescences

Fluorescence
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Fluorescence Excitation

Soller slits + Z-1 filter improve
fluorescence

Ion chamber




Self-absorption
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Reduces to I ocpy if pt <<'1 (thin)
If put >> 1 (thick)
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Goulon J, et al. “On Experimental Attenuation Factors Of The

Amplitude Of The EXAFS Oscillations In Absorption, Reflectivity And
Luminescence Measurements”, J de Physique 43, 539-548 1982

Self—abso(rp)tion continued
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Only if py << pj (dilute)
Fluorescence excitation spectra only give

accurate iy if samples are thin or dilute.
Otherwise, need to correct.

Waldo GS, Carlson RMK, Moldowan JM, Peters KE, Penner-Hahn JE
“Sulfur Speciation In Heavy Petroleums - Information From X-ray
Absorption Near-edge Structure “ Geochim Cosmochim Acta 55 801-

814 (1991)

If samples are not either thin or
dilute, will have self-absorption

Effect of self-absorption
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Pickering 1J, et al. “Analysis of sulfur biochemistry of sulfur bacteria using X-ray
absorption spectroscopy” Biochemistry 40 8138-8145 (2001)
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If a sample gives a reasonable transmission
signal, it is too concentrated to measure by
fluorescence (unless sample is very thin)

Signal/Noise concerns in XAS

Counting statistics — uncertainty ~ (counts)”:
If there is no background, S/N= (counts)”
Typical fluorescence 10* sec! to 10° sec™!

Transmission ion-chambers — typical
currents >10 nA ~ 10'° electrons/s
Negligible noise from counting
statistics.

Important noise sources: electronic,
microphonic, beam problems (below)




Sensitivity
EXAFS amplitude falls of ~ 1/k?
10% effect at k=2 A~!; 0.03% at k=14 A!
For EXAFS S/N=3 at 14 A need
absorption S/N=3/0.0003=10*
Therefore need 108 counts at k=14 A-!

What is required to have
108 fluorescent photons

Incident flux ~ 2:1013 sec™! in 108 m?
Fluorescence yield = 0.5 — need
absorbance of 10 to give 10® fluorescent
photons in 1 second
Absorbance = 3-10* barns/atom
= 3.10—16 N
Need N ~ 3-1010
50 fmole, 50 uM if sample is (100 um)3

Reality

Detected solid angle is 1-5% (i.e., 10° sec™!)
but — count times of 100 sec/pt are realistic —
total measurement time ~6 hrs (vs. 3 minutes)

However
Effective count rate is often detector-limited:

if scatter:fluorescence is 100:1, N, ~10*
(10%-fold lower than optimum).

* Solids
— If absorbance of element of interest > background
absorbance use transmission

— If absorbance of element of interest << background
absorbance use fluorescence

— Samples need to be optically thin — often requires
dilution
* Solutions
— If concentrated, treat like a solid
— If dilute (negligible edge jump) use fluorescence
— Typical limits
* ~ 100 uM Zn in 50 pL aqueous solution (5 nmole)
* ~1.0mM V in 10 pL aqueous solution (10 nmole)
* 10 uM Mo in 200 pL aqueous solution (2 nmole)

Bragg’s Law
ni=2dsin@;E =hc/A
E_ nhc
2dsind Double-crystal

% monochromator

Energy resolution
nA=2dsiné

Angular divergence gives
spread in energy. Vertical
slits decrease A0, and thus
AE.

For many 3™ generation sources,
angular divergence of beam is
small compared to intrinsic
width of reflection




Energy calibration
nA=2dsiné

Want to know E to ~0.1 eV (1 part in 10°)
Accurate absolute energy determination is
hard. Typically, settle for precise relative
energy.

For absolute calibration, see:

Pettifer RF, Hermes C “Absolute energy calibration of x-
ray-radiation from synchrotron sources” J Appl
Crystallogr 18, 404-412 (1985)

Internal energy calibration
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Harmonic contamination
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Experimental consequence of harmonic contamination
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pinholes and self-absorption cause similar effect —
amplitudes are too small
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Radiation damage
Dependence of XANES on Oxidation State
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Mn(III) shows significant radiation damage
Room temperature, 30 minute scans
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Low temperature (4K) reduces but does not

eliminate radiation damage
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Low temperature can’t be used if thermochromic

Flowing fluid samples can prevent radiation damage
Mn3**(salpn)(acac) in Acetone + 15% H,0
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Flow system can be used for time
resolved measurements

Mixer

Solution | Solution 2

Increasing reaction time
Sampling beam =——

Requirements (for reasonable sample volumes):

*Rapid scanning
*Small sample (i.e., small beam)

Kirkpatrick-Baez
focusing optics
~ 1 um spot size s

Zone plate

~ 30 nm spot size s

raster seanned
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Polarized XAS Polarized XAFS of Mo/Fe/S clusters
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