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Lecture 2.
Practical Aspects of X-ray Absorption

• Measurement of absorption
• Energy selection
• Artifacts (how NOT to measure the 

right signal)
• Radiation damage

Detection of x-rays
X-rays are ionizing radiation – need to 
collect (and count) ionizations

X-ray

Transmission measurements

t sample thickness (cm)
μ absorption coefficient (cm–1)
μm mass absorption coefficient (cm2g–1)
ρ Density (g cm–3)

Beer-Lambert law  I0=incident, It=transmitted
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Absorbance is great for 
concentrated samples, 
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but not for dilute samples.

Transmission is also sensitive to 
background absorption
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Fluorescence
(what goes up must come down)
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Fluorescence excitation spectra

I0 Ion chamber
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I1 Ion chamber

IF
fluorescence

detector
Monochromatic

Beam

Measure fluorescence intensity as 
excitation energy is scanned

Fluorescence Detectors
•Energy resolving

•Energy dispersive – Ge or Si(Li)
•Wavelength dispersive
•Exotic

•Non-energy resolving
•Ion chamber
•PIN diode

Energy-dispersive detectors

http://www.canberra.com/products/491.asp
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Solid-state detectors have relatively 
low maximum count rates

http://www.xia.com/AppNotes/DXP_Pile.pdf

Energy-dispersive detectors 
typically have high resolution
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Wavelength-dispersive detectors Reasonable solid angle results in low 
resolution, but unlimited count rate
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Fluorescence Excitation

Z-1 element functions as 
low-pass filter, but filter fluorescences

Soller slits + Z-1 filter improve 
fluorescence

Ion chamber
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Self-absorption

Reduces to If ∝μX if μt << 1 (thin)

Goulon J, et al.  “On Experimental Attenuation Factors Of The 
Amplitude Of The EXAFS Oscillations In Absorption, Reflectivity And 
Luminescence Measurements”, J de Physique 43, 539-548 1982
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Only if μX << μB (dilute)
Fluorescence excitation spectra only give 
accurate μX if samples are thin or dilute.  

Otherwise, need to correct.
Waldo GS, Carlson RMK, Moldowan JM, Peters KE, Penner-Hahn JE 
“Sulfur Speciation In Heavy Petroleums - Information From X-ray 
Absorption Near-edge Structure “ Geochim Cosmochim Acta 55 801-
814 (1991)

If samples are not either thin or 
dilute, will have self-absorption

Effect of self-absorption

Pickering IJ, et al. “Analysis of sulfur biochemistry of sulfur bacteria using X-ray 
absorption spectroscopy” Biochemistry 40 8138-8145 (2001)

Self-absorption
If a sample gives a reasonable transmission 

signal, it is too concentrated to measure by 
fluorescence (unless sample is very thin)

Signal/Noise concerns in XAS

Transmission ion-chambers – typical 
currents ≥10 nA ~ 1010 electrons/s 
Negligible noise from counting 
statistics.

Important noise sources:  electronic, 
microphonic, beam problems (below)

Counting statistics – uncertainty ~ (counts)½

If there is no background, S/N= (counts)½

Typical fluorescence 104 sec–1 to 105 sec–1
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Sensitivity
EXAFS amplitude falls of ≈ 1/k3

10% effect at k=2 Å–1; 0.03% at k=14 Å–1

For EXAFS S/N=3 at 14 Å–1 need 
absorption S/N=3/0.0003=104

Therefore need 108 counts at k=14 Å–1

What is required to have 
108 fluorescent photons

Incident flux ≈ 2·1013 sec–1 in 10–8 m2

Fluorescence yield ≈ 0.5 → need 
absorbance of 10–5 to give 108 fluorescent 
photons in 1 second

Absorbance = 3·104 barns/atom
= 3·10–16 ·N

Need N ≈ 3·1010

50 fmole, 50 μM if sample is (100 μm)3

Reality
Detected solid angle is 1-5% (i.e., 106 sec–1)
but – count times of 100 sec/pt are realistic →
total measurement time ~6 hrs (vs. 3 minutes)
However
Effective count rate is often detector-limited:  
if scatter:fluorescence is 100:1, Nmax~104

(102-fold lower than optimum).

• Solids
– If absorbance of element of interest > background 

absorbance use transmission
– If absorbance of element of interest << background 

absorbance use fluorescence
– Samples need to be optically thin – often requires 

dilution
• Solutions

– If concentrated, treat like a solid
– If dilute (negligible edge jump) use fluorescence
– Typical limits

• ~ 100 μM Zn in 50 μL aqueous solution (5 nmole)
• ~1.0 mM V  in 10 μL aqueous solution (10 nmole)
• 10 μM Mo in 200 μL aqueous solution (2 nmole)

Bragg’s Law
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Double-crystal 
monochromator

Energy resolution
θλ sin2dn =

Angular divergence gives 
spread in energy.  Vertical 
slits decrease Δθ, and thus 
ΔE.

For many 3rd generation sources, 
angular divergence of beam is 
small compared to intrinsic 
width of reflection
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Energy calibration
θλ sin2 dn =

Want to know E to ~0.1 eV (1 part in 105 )
Accurate absolute energy determination is 
hard.  Typically, settle for precise relative 
energy.
For absolute calibration, see:

Pettifer RF, Hermes C “Absolute energy calibration of x-
ray-radiation from synchrotron sources” J Appl
Crystallogr 18, 404-412 (1985)

Internal energy calibration
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Experimental consequence of harmonic contamination

pinholes and self-absorption cause similar effect –
amplitudes are too small

“Monochromatic” 
beam is not really 
monochromatic, due 
to harmonic 
contamination

Harmonic rejection mirror
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Dependence of XANES on Oxidation State
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Increasing time

Mn(III) shows significant radiation damage
Room temperature, 30 minute scans
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Low temperature (4K) reduces but does not 
eliminate radiation damage

Low temperature can’t be used if thermochromic
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Flowing fluid samples can prevent radiation damage
Mn3+(salpn)(acac) in Acetone + 15% H2O

Flow rate = 0.05 - 6.4 μL/s

Residence time in beam  = 
2 s - 16 ms

Flow system can be used for time 
resolved measurements

Requirements (for reasonable sample volumes):
•Rapid scanning
•Small sample (i.e., small beam)

Kirkpatrick-Baez 
focusing optics 
~ 1 μm spot size

Zone plate 
~ 30 nm spot size
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Polarized XAS

x-ray beam

Fluorescence Detector

Crystal or 
other oriented 
sample

Sample
positioner

Polarized XAFS of Mo/Fe/S clusters
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Flank, Weininger, Mortenson, & 
Cramer, J. Am. Chem. Soc., 108. 
1049.


