
Computational Assessment of Text Readability:  
A Survey of Current and Future Research 

 
Running title:  Computational Assessment of Text Readability 

 
 

Kevyn Collins-Thompson 
Associate Professor 
University of Michigan, School of Information 
105 South State St. 
Ann Arbor, Michigan, U.S.A. 48109 
Email: kevynct@umich.edu 
Phone: +1 734-615-2132 
 
 
Working draft 
 
Last updated: Sept 8, 2014 10:36am 
 
The author welcomes corrections, omissions, or comments sent to the above email address. 
 
All material copyright © 2014 by the author. 
 
 

 

mailto:kevynct@umich.edu


Abstract: 

Assessing text readability is a time-honored problem that has even more relevance in today’s 
information-rich world. This article provides background on how readability of texts is 
assessed automatically, reviews the current state-of-the-art algorithms in automatic modeling 
and predicting the reading difficulty of texts, and proposes new challenges and opportunities 
for future exploration not well-covered by current computational research.  
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A Survey of Current and Future Research  

 
 

1. Introduction  
 

For as long as people have originated, shared, and studied ideas through written 
language, the notion of text difficulty has been an important aspect of communication 
and education. As described by Zakaluk and Samuels (1988), scholars in ancient Athens 
more than two millennia ago noted a concern for text comprehensibility as part of the 
rhetorical training for law students: a legal argument or analysis was of little persuasive 
value if its audience could not understand it. Only within the last century, however, has 
a more systematic, scientific approach been taken to understanding the subjective and 
objective factors associated with text difficulty, and how best to support readers in their 
quest to understand more difficult texts, or find texts at the right level of difficulty. 

As part of this systematic approach, text readability has been more formally 
defined as the sum of all elements in textual material that affect a reader’s understanding, 
reading speed, and level of interest in the material (Dale & Chall, 1949). These elements 
may include features such as the complexity of sentence syntax; the semantic familiarity 
to the reader of the concepts being discussed; whether there is a supporting graphic or 
illustration; the sophistication of logical arguments or inference used to connect ideas; 
and many other important dimensions of content. In addition to text characteristics, a 
text’s readability is also a function of the readers themselves: their educational and social 
background, interests and expertise, and motivation to learn, as well as other factors, can 
play a critical role in how readable a text is for an individual or population.  

Given the importance of text readability in meeting people’s information needs, 
along with modern access to ever-larger volumes of information, the implications of 
achieving effective text readability assessment are as diverse as the uses for text itself. 
The ability to quantify the readability of a text is achieved through the use of readability 
measures that take a text as input and estimate a numerical score or other form of 
prediction that indicates the level or degree of readability for a given population. In this 
survey, we focus less on the graphical aspects of readability, such as font size or color 
contrast, that affect a reader’s initial ability to visually decode a text, and more on the 
linguistic features of a text that affect subsequent comprehension difficulty. Thus, we 
sometimes use the phrases text difficulty or reading difficulty synonymously with text 
readability for the purposes of this article. 

Modern research on estimation of text readability, and the development of 
readability measures, has a history going back at least a century (cf. Chall, 1958). Yet far 
from being a ‘solved’ problem, automated assessment of text readability remains a 
challenging and highly relevant research area. Also notable is the key role that automated 
readability assessment can play in specific application domains where the accessibility 
of critical information is especially important and may currently be lacking. These 
include finding educational material of the right difficulty for students in textbooks and 
online; calibrating public and private health information so that it is understandable by 



the general public and individual patients, in the form of medical instructions, 
questionnaires, pamphlets, online resources, and the like; producing effective product 
guides and other documentation; creating informative and easy-to-understand Web sites 
and forms for critical government services; and supporting the world’s information needs 
via the Web and social media using search engines and recommender systems. 

With the advent of increasingly sophisticated computation methods, along with 
new sources of data and applications to the Web and social media, the field of automated 
text readability assessment has evolved significantly in the last decade, and its utility and 
scope across applications have increased dramatically. On the one hand, widely-used 
traditional readability measures like Flesch-Kincaid, which estimate text readability 
based on simple functions of two or three linguistic variables such as syllable and word 
counts, have been used for decades on traditional texts. However, there is now a shift 
underway away from these simple but shallow traditional measures, in favor of data-
driven, user-centric, knowledge-based computational readability assessment algorithms 
that use rich text representations derived from computational linguistics, combined with 
sophisticated prediction models from machine learning, for deeper, more accurate and 
robust analysis of text difficulty. These new approaches are dynamic and oriented 
towards both traditional and non-traditional texts: They can learn to evolve automatically 
as vocabulary evolves, adapt to individual users or groups, and exploit the growing 
volume of deep knowledge and semantic resources now becoming available online. In 
addition, non-traditional domain areas like the Web and social media offers novel 
challenges and opportunities for new forms of content, serving broad categories of tasks 
and user populations. This article provides a self-contained survey of automated methods 
for assessment of text readability: from essential background material, through a 
summary of current state-of-the-art approaches, to identification of future trends and 
directions that would benefit from further research. 

This survey is intended to complement existing readability-related surveys, which 
have tended to focus on educational (Benjamin, 2012) or psychological (Zakaluk and 
Samuels, 1988) aspects of readability measures. The present work provides a 
computational linguistics and computer science perspective, focusing on core text 
representations and algorithms used by computational readability assessment methods, 
and taking a broad view of application areas. Finally, based on the literature survey 
contained here, as well as the author’s expensive experience developing core readability 
models and applying them in complex application domains like Web search, we identify 
and discuss specific areas not well covered by existing research. These in turn suggest 
new directions that we believe are compelling and timely for future research in 
computational methods for readability assessment. 
 
2. Background and Early Research 
 

There is a significant body of work on readability that spans the last 70 years. A 
comprehensive summary of early readability work may be found in the works of Chall 
(1958), Klare (1963) and Zakaluk and Samuels (1988). Traditional readability measures 
are those that rely on two main factors: the familiarity of semantic units such as words or 
phrases, and the complexity of syntax. In order to make these measures straightforward 
to apply, traditional readability formulas make two major simplifying assumptions. First, 



the semantic and syntactic factors are estimated using easy-to-compute proxy variables. 
For example, a popular proxy variable for a word’s semantic difficulty is the number of 
syllables in the word, and a widely-used proxy variable for a sentence’s syntactic 
difficulty is the sentence’s length in words. Second, the ordering of words and sentences 
is typically ignored: The semantic variables are averaged over all words, and syntactic 
variables averaged over all sentences, regardless of order. Aspects of reading difficulty 
associated with higher-level linguistic structures in the text, such as its discourse flow or 
topical dependencies, are ignored.  

The focus on semantic (vocabulary) and syntactic (sentence complexity) features 
for readability prediction has made sense for many traditional texts. Vocabulary difficulty 
is known to account for at least 80% of the total variability explained by readability scores 
for traditional texts, with sentence structure giving a small additional amount of 
predictive power (Chall, 1958, p. 156-158). Perhaps the most widely-used traditional 
measure is the Flesch-Kincaid score (Kincaid et al., 1975), which has been implemented 
as a feature in word processing software such as Microsoft Word™ and is typical of the 
dozens of similar variants (Mitchell, 1985) that have been developed. The Flesch-Kincaid 
formula is:  

 
         59.15][8.11][39.0 −⋅+⋅= ordlablesPerWAverageSylncedsPerSenteAverageWorRGFK  
 

In general, combining semantic and syntactic features has yielded the best results for 
traditional settings (Chall and Dale, 1995). 

An important sub-class of traditional measures, termed ‘vocabulary-based’ 
traditional measures, estimate the semantic difficulty of words in a text by assigning 
individual words a familiarity or difficulty level based on their occurrence in a pre-
specified vocabulary resource. This ‘word difficulty’ variable then forms the semantic 
component of the traditional measure, instead of a surface measure such as syllable count. 
In classic vocabulary-based readability studies, the vocabulary resource is a reference 
word list that provides information about the familiarity or difficulty of individual words. 
One widely-known measure of this type is the Revised Dale-Chall formula (Chall and 
Dale, 1995), which uses the Dale 3000 word list of words familiar to 80% of American 
fourth-graders. A word is labeled as ‘unfamiliar’ if it does not occur in the list. The Fry 
Short Passage measure (Fry, 1990), is also in this family, and uses Dale & O’Rourke’s 
Living Word Vocabulary of 43,000 types (Dale and O’Rourke, 1981) to provide the 
grade level of individual words in context. In later approaches, the vocabulary resource 
has been a text corpus: a word’s difficulty is defined in terms of its frequency in a large 
standard collection of representative text. Rarer words with low frequency in the corpus 
are considered less familiar, and thus, likely to be more difficult, than higher-frequency 
words. A widely-used measure in this family is the Lexile measure (Lennon & Burdick, 
2004: version 1.0), which uses word frequencies from the Carroll-Davies-Richman 
corpus (Carroll et al., 1971). All of these vocabulary-based measures combine a word 
unfamiliarity variable to estimate semantic difficulty together with a syntactic variable, 
such as average sentence length, for estimating sentence difficulty. 

While traditional readability formulas like Flesch-Kincaid are widely-available 
and relatively easy to compute, they also have some serious limitations, especially in the 
context of the Web and online information access. First, such formulas make strong 



assumptions about the text being assessed: They typically assume the text has no noise, 
or limited noise, and that it consists of well-formed sentences. Second, traditional 
measures also require significant sample sizes of text, since they become unreliable for 
passages with less than 300 words (cf. Kidwell et al., 2009). Third, a number of recent 
studies have demonstrated the unreliability of traditional readability measures for Web 
pages and other types of non-traditional documents (Si and Callan, 2001; Collins-
Thompson and Callan, 2004; Peterson and Ostendorf, 2006; Feng et al., 2009). In 
general, the reliance of traditional formulas on a small number of summary text features 
is both a strength and a weakness: Simple formulas are generally easier to implement, 
but these same formulas have a basic inability to model the semantics of vocabulary 
usage in context, which becomes important to capture for richer notions of text difficulty.  

Finally, traditional readability measures are based only on surface characteristics 
of text, and ignore deeper levels of text processing known to be important factors in 
readability, such as cohesion, syntactic ambiguity, rhetorical organization, and 
propositional density. They also ignore the reader’s cognitive aptitudes, such as the 
reader’s prior knowledge and language skills, which are used while they interact with the 
text. As a result of these limitations, the validity of traditional readability formula 
predictions of text comprehensibility is often suspect.  

In sum, these types of limitations, along with recent opportunities to exploit new 
computational and data resources, have recently inspired researchers to explore how 
richer linguistic features combined with machine learning techniques could lead to a new 
generation of more robust and flexible readability assessment algorithms. We now give 
background on these developments as they relate to machine learning-based approaches 
to readability assessment. 
 
3. Automated Readability Assessment 

 
The above limitations in traditional formulas, combined with advances in 

machine learning and computational linguistics, and the increasing availability of 
training data, helped precipitate a new approach to readability assessment starting in the 
early- to mid-2000s. François (2009) has called this the ‘AI’ (Artificial Intelligence) 
approach to readability. These new approaches typically combine a rich representation 
of the text being evaluated, based on a variety of linguistic features, with more 
sophisticated prediction models based on machine learning. Some of these approaches 
appear similar to traditional readability formulas based on linear regression, in the sense 
that the parameters of these learning-based approaches are ‘fit’ to values that minimize 
prediction error on a corpus of labeled examples. However, unlike traditional methods, 
advanced machine learning frameworks use dozens or even thousands of features and 
can express sophisticated ‘decision spaces’ that are better at capturing the complex 
interactions between many variables that may characterize document difficulty for 
different reading levels and readers. In turn, these models often give increased prediction 
accuracy and reliability for the specific tasks or populations for which they were trained. 
This section gives an overview of how these learning-based approaches work, and the 
nature of some representative current implementations. 
 
3.1 Readability assessment as a machine learning problem 



 
As typically defined, a machine-learning approach to readability prediction 

consists of three steps, as summarized in Figure 1. First, a gold-standard training corpus 
of individual texts is constructed that is representative of the target genre, language, or 
other aspect of text for which automatic readability assessment is desired. Each text in 
the training corpus is assigned a ‘gold standard’ readability level – typically from expert 
human annotators, but other measures for assigning the label, such as via crowdsourcing, 
are discussed later. These ‘gold standard’ labels are proxy estimates of the reading 
comprehension level for the target population. The standard unit for reading difficulty 
labels is the grade level, but other scales of measurement are also used. The grade level 
could be an ordinal value corresponding to discrete ordered difficulty levels, for instance, 
American grade levels 1 through 12, or it could be a continuous value within a range, to 
capture within-level gradations, which are especially important for earlier grade levels 
(e.g. a text at Grade 3.4). Examples of labeled corpora are given in Section 3.4. 

 
                                      [Insert Figure 1 here] 
 
Second, a set of features is defined that are to be computed from a text. These 

features capture semantic, syntactic, and other attributes of the text that are salient to the 
target readability prediction task. As an over-simplified example, a very basic readability 
prediction model for second-language readers might compute a semantic feature that is 
the proportion of unfamiliar words in the text relative to an ESL reference list, and a 
syntactic feature that is the proportion of passive-voice sentences in the text, by using 
parse trees computed for each sentence. We discuss the types of features used for 
readability prediction in detail in Section 3.2. 

Third, a machine learning model learns how to predict the gold standard label for 
a text from the text’s extracted feature values. First, for each training example (i.e., 
labeled text from the training corpus), the specified features are extracted to form a 
feature vector that represents the text. Next, the machine learning model is shown these 
example feature vectors along with their corresponding gold standard labels. The model 
typically has a set of parameters that control how a text’s label is predicted from its 
feature vector. To train the model, these parameters are adjusted so that the model’s label 
predictions for each text are as close as possible to the corresponding gold standard 
labels. One commonly-used measure of prediction error is Root Mean Squared Error 
(RMSE). To find a set of model parameters that is likely to generalize well to new texts, 
during the training phase, models are typically cross-validated against data unseen by the 
model. Lastly, the optimized model is applied to a final, previously unseen subset of the 
gold standard corpus, called the test set, to estimate how well the prediction model is 
likely to generalize to future texts. This data-driven approach to readability prediction is 
a very flexible approach to creating or updating a readability measure: It is often easy to 
retrain the model for different tasks or populations as long as training data are available. 
We discuss the role of machine learning models in Section 3.3. 

Reading difficulty prediction is different from related machine learning tasks like 
topic prediction or sentiment prediction (Pang & Lee, 2008) that also assign a label or 
score to a text passage. For readability, the label is arguably more subjective, or at least 
most user- or population- specific than sentiment detection. In addition, using machine 



learning methods that produce models that are easy for humans to interpret can be 
especially important in readability prediction, particularly for educational applications 
where teachers or students may need to understand the factors that help explain why a 
text is considered difficult or a good versus poor match for a student.  

Because many factors can influence comprehension, assigning a specific 
readability level to a given text is not an easy task. How hard is this labeling task for 
people?  To our knowledge there have been few readily available published studies of 
inter-rater reliability for readability labels. There are a number of domain-specific 
studies, however. For medical information, a study by Ferguson & Maclean (1991) on 
teacher readability ratings for 60 medical journal articles found low to high inter-rater 
agreement depending on the dimension of readability being assessed. Those dimensions 
having the highest inter-rater reliability involved the aspects of readability that were 
easiest to define and operationalize for the human raters: lexical difficulty, syntactic 
complexity, and contextual complexity and support (high agreement, Pearson correlation 
0.60-0.90) as compared to rhetorical organization (moderate agreement, 0.40-0.60) and 
information density/topic accessibility (low agreement, 0.00-0.40). For administrative 
texts, a study by François et al. (2104) found a rather low inter-annotator agreement 
among experts: the average Krippendorff’s alpha, across 7 batches of 15 texts, did not 
exceed 0.37. In a crowdsourcing setting with a general set of documents, De Clercq et al. 
(2013) found a Pearson correlation between crowd-based labels and expert labels (at the 
‘easy’ level) of 0.86. 

Specific classes of features have been explored for readability assessment that 
roughly correspond to factors known to affect readability shown in Figure 2.  

 
[Insert Figure 2 here] 

 
These broad categories of readability feature types, from ‘low’ to ‘high’ level are: 

• Lexico-semantic: rare, unfamiliar or ambiguous words. 
• Morphological:  rare or more complex morphological particles. 
• Syntax:  grammatical structure. 
• Discourse:  

o (i) Micro-structural organization of text: use of connectives and other 
cohesion features to clarify relationships or transitions;  

o (ii) Macro-structural organization: features characterizing explicit, clear 
argument structure. 

• Higher-level semantics: use of unusual senses, idioms, or subtle connotation; 
domain or world knowledge required to comprehend a text. 

• Pragmatic: contextual or subjective language influenced by genre, e.g. sarcasm. 
 
We discuss studies that have used the more predominant of these feature types in 

the next sections. Then, we discuss the role of the machine learning models in which 
these features are used, and the importance of the model versus feature selection in 
readability prediction effectiveness. 

 
3.2 Text features for computational readability assessment 



 
Lexico-semantic features. Reflecting the importance of vocabulary in readability, lexico-
semantic features capture attributes associated with the difficulty or unfamiliarity of 
vocabulary, i.e. specific words or phrases in a text. A widely-used feature of lexical 
difficulty for a word is thus the relative frequency of that word in everyday usage, as 
measured by its relative frequency in a large representative corpus, or its 
presence/absence in a reference word list. Several of these semantic word familiarity 
features were described earlier as the basis for vocabulary-based readability measures. A 
particular readability prediction model could either use thousands of individual lexical 
feature values as input (e.g. corresponding to the presence or absence of specific words 
in a text), or it could form features that are aggregated estimates of lexical difficulty. An 
example of an aggregated lexical feature is the ratio of unique terms to total terms 
observed in a text, a statistic known as the type-token ratio. The type-token ratio is one 
of a more general class of lexical richness measures that capture the range and diversity 
of vocabulary in a text (Malvern & Richards, 2012). These statistics capture the tendency 
for more advanced texts to be authored using a larger vocabulary and exhibit a larger 
variation in vocabulary than simpler texts of the same length. Other examples of lexical 
features are shown in Figure 3. 

A statistical language model is another source of lexical features, and can be 
thought of as a word histogram giving the relative probability of seeing any given 
vocabulary word in a text. Statistical language modeling exploits patterns of word use in 
language. To build a statistical model of text, training examples are used to collect 
statistics such as word frequency and order. The word lists used in vocabulary-based 
readability measures like Dale-Chall may be thought of as a simplified language model. 
The statistical language modeling method described in Collins-Thompson and Callan 
(2004) greatly generalized this vocabulary-based approach, so that multiple language 
models are built automatically from training data, typically one for each grade level to 
be predicted. Such models can capture fine-grained information about vocabulary usage 
of individual words across levels. Statistical language modeling provides a probability 
distribution of prediction outcomes across all grade models, not just a single grade 
prediction. It also provides more data on the relative difficulty of each word in the 
document. This might allow an application, for example, to provide more accurate 
vocabulary assistance.  

Like the statistical language models of Collins-Thompson & Callan (2004), the 
Word Maturity measure (Kireyev and Landauer, 2011; Landauer et al., 2011) tracks 
usage of individual words and phrases as a function of learning stage. However, a key 
additional ability of the Word Maturity measure is that it accounts for not only how and 
when a word’s frequency changes with learning stage, but how the word’s usage in 
context changes, and thus the degree of knowledge a reader is expected to have at any 
given stage. For example, a word like ‘bug’ is used in a limited ‘insect’ sense in early-
stage texts, but acquires additional senses and subtleties of meaning, such as ‘surveillance 
device’ in more advanced texts. A word’s maturity level f(w, L) is a function not only of 
word w but also a learner level L, allowing for the possibility of more personalized 
readability measures. To model the richness of contexts in which a word appears, the 
Word Maturity measure uses Latent Semantic Analysis (LSA: Deerwester et al., 1990) 
to extract the range of typical ‘topics’ that characterize a word’s context at a given 



learning stage. To do this, an intermediate corpus is created for each learning stage to be 
modeled (e.g. each stage might correspond to a grade level). Next, the representative 
topics of that stage’s corpus are computed using LSA. A word at a particular grade or 
learning stage is represented by a feature vector of LSA topics, which roughly correspond 
to the spectrum of topics that occur in the contexts where the word is used. A word’s 
feature vector is also computed for a full, adult-stage reference corpus, representing the 
full range of senses/topics attributed to that word at its most ‘mature’ learning stage. 
Finally, the meaning representation of each word (LSA vector) is compared against the 
corresponding LSA vector of the same word in the most advanced reference model. 
These difference are aggregated across all words in the text in question, and individual 
word knowledge is aligned with the measure by adaptive testing over multiple graded 
texts. Pearson has implemented a beta version (as of this writing) of the Reading Maturity 
Metric (RMM: http://www.readingmaturity.com/rmm-web/), which includes Word 
Maturity features as part of a range of computational linguistic features to assess syntactic 
complexity, coherence, and structural features of the text. 

For languages with rich inflectional and derivational morphology that convey 
meaning e.g. through the choice of different word suffixes and prefixes, such 
morphological features of words can play an important role in assessing readability. For 
example, Hancke et al. (2012) showed the effectiveness of adding additional morphology 
features in readability classification for German. 

 
Psycholinguistics-based lexical features. Building on earlier research in language 
acquisition and psycholinguistics, newer automated readability measures have 
incorporated features that capture cognitive aspects of reading not directly addressed by 
the surface vocabulary and syntax features of traditional formulas. These types of lexical 
features include a word’s average age-of-acquisition, concreteness, and degree of 
polysemy. In particular, word concreteness has been shown to be an important aspect of 
text comprehensibility: previous studies (Paivio et al., 1968; Richardson, 1975) defined 
concreteness in terms of the psycholinguistic attributes of perceivability (ability to sense 
an object) and imageability (ability to imagine the object easily and quickly). Tanaka et 
al. (2013) incorporated these word concreteness attributes into their text 
comprehensibility measure. Cognitively-based lexical features have been of particular 
interest in readability measures for second-language learners (Crossley et al., 2008; 
Vajjala & Meurers, 2012). 

 
Syntactic features. Syntactic complexity is known to be associated with longer processing 
times in comprehension (Gibson, 1998) and is a widely-used factor included in 
automated readability assessment. The most recent readability prediction methods use a 
richer set of features to capture a text’s syntactic complexity than just the traditional 
sentence length. It is now typical to use a natural language parser to perform shallow or 
deep analysis of text, depending on how well-formed the language structure of the target 
text genre is expected to be. Syntactic readability features are then computed from these 
parse structures. Figure 3 shows a list of typical syntactic features derived from shallow 
and deep parsing. 
 

[Insert Figure 3 here] 

http://www.readingmaturity.com/rmm-web/


 
The more advanced syntactic features capture properties of the parse tree that are 
associated with more complex sentence structure. Pitler & Nenkova (2008) found that of 
all these syntax-related features they examine, the average number of verb phrases per 
sentence had the highest Pearson correlation with difficulty (r= 0.42) in their news 
corpus. In actually training more complex models, the average parse tree depth feature 
consistently appeared in the best-performing prediction models. Further examples of 
advanced syntactic features may be found in the studies of Schwarm & Ostendorf (2005), 
Heilman et al. (2007) and Kate et al. (2010). 

 
Discourse-based features. Text is more than a series of random sentences: language 
exhibits higher-level, longer-range structure by virtue of the dependencies and 
relationships that exist between its elements. Often, the interpretation of one element in 
a text may depend on another: this property has been termed cohesion (Halliday and 
Hasan, 1976). At a macro-level, the coherence properties of a text, which reflect its 
logical ordering of arguments and ideas, and systematic organizational structure, can also 
be considered part of discourse-level structure that affects the readability of text. 

Well-organized, cohesive content should be on average more readable than texts 
that are not, yet properties like cohesion are not captured by traditional readability 
formulas. Newer automated assessment measures have attempted to remedy this by 
adding higher-level cohesion- and coherence-related features such as discourse cues, 
topic continuity from sentence to sentence, idea density, text composition, and logical 
argumentation. The study by Pitler and Nenkova (2008) was one of the first to explore 
measures that combined lexical, syntactic, and higher-level discourse features for 
predicting readability for English texts. Their work empirically demonstrated that 
discourse relations are strongly associated with perceived text readability and are robust 
for both predicting and ranking the readability of texts. Recent work has extended the use 
of higher-level discourse features to other languages, including French (Todirascu et al., 
2013; Dascalu, 2014) and Chinese (Sung et al., 2014). 

Advances in computational linguistics, starting in the late 1970s, have made it 
possible to extract a variety of important new higher-level language features from textual 
material, particularly with regard to cohesion. Coh-Metrix (Graesser and McNamara, 
2004) is a computational linguistics tool that has played a prominent role in automated 
readability assessment, by providing a multi-dimensional set of linguistic and discourse 
features for text representation. As of version 3.0, Coh-Metrix incorporated 108 different 
indices (text features), capturing high-level aspects such as: 

 
• degree of referential cohesion (e.g., noun overlap of adjacent sentences) 
• deep cohesion (causal events and actions expressed via connectives) 
• degree of narrativity (story-telling aspects), 
• temporality (degree of consistent tense and aspect). 

 
Coh-Metrix also provides a rich set of standard and cognitively-motivated lexical 
features, including word concreteness, imagability, and degree of polysemy. Cohesion-
type features are being explored for assessing readability in non-traditional genres that 
do not follow traditional sentence structure. Flor et al. (2013) define a readability measure 



for poetry and prose based on what they term lexical tightness, which quantifies the 
fraction of word pairs in a text that are highly related, as estimated by co-occurrence-
based or other association measure. 
 
Higher-level semantic and pragmatic features.  Given that a text is a communication 
between author and reader, its readability may depend on the reader having some shared 
domain knowledge or understanding about the world. This may be evident in the use of 
specific idioms or local references, or more broadly in requiring background knowledge 
or cultural context. Along another dimension, pragmatic features capture contextual, 
subjective aspects of meaning that could be of use for readability in maintaining reader 
motivation and engagement. This might include characterizing the genre of the text (e.g. 
satire) or the positive/negative sentiment of the text. As one example, Honkela et al. 
(2012) conducted a study using semantic and pragmatic features derived from topic 
modeling and sentiment analysis to select stories that were not only relevant to the reader, 
but also provided emotionally supportive, encouraging content. In general, few 
computational approaches to readability have tackled the difficult problem of 
incorporating higher-level semantic and pragmatic features. It is evident that the future 
potential of computational linguistics and natural language processing to derive features 
that can reliably capture the highest levels of text difficulty and understanding, such as 
pragmatics, subtle semantics, and world knowledge, has yet to be fully explored. 
 
3.3 Machine learning models for readability prediction 

 
How are the above features combined to produce a readability prediction using a 

data-driven machine learning approach (referred to as the learning framework)?  In most 
cases, the computational readability measure can be described as a function that maps 
text to a numerical output value that corresponds to a difficulty or grade level. Depending 
on the scale of measurement for the output variable, computational readability prediction 
can be treated as a form of classification task (with ordered or unordered category levels), 
regression problem (with continuous-valued levels) or ranking problem (with ordered 
relative levels). In these learning frameworks, the output variable is typically a readability 
level or score, and the input variables are the set of feature values computed from the text 
as described above. Most studies cited here are of the regression or classification type. 
However, some studies, such as those by Pitler & Nenkova (2009) treat readability 
prediction as a pairwise preference learning problem, predicting the relative difficulty of 
pairs of documents instead of giving an absolute level to each. Extending this idea, 
Tanaka-Ishii et al. (2010) treated text readability as a ranking problem, combining 
pairwise assessments of texts to produce an ordering of the texts by reading ease. This is 
a natural and useful approach for applications that only require a relative ordering, such 
as the case of a search engine producing a ranked set of results. 

Heilman et al. (2008) compared various classification and regression models for 
readability prediction, including an examination of how the choice of measurement scale 
affected prediction accuracy. They found that the most effective predictions of reading 
difficulty resulted from using a proportional-odds prediction model, which assumes an 
ordinal scale of measurement. In other words, reading difficulty appears to increase 
steadily as a function of grade level, but not as a linear function. Thus, ordinal regression 



models (McCullagh, 1980) are typically a favored choice of learning framework for 
readability prediction. Various studies have also used learning frameworks such as 
Gaussian process regression, decision trees and support vector regression (e.g. Kate et 
al., 2010). 

In the end, a compelling question is whether these more sophisticated non-
traditional NLP features and machine learning models have improved accuracy over 
traditional readability formulas. In general, the answer is yes. In one study, François and 
Miltsakaki (2012) compared the performance of classic and non-classic readability 
features, using two predictor models: linear regression, and support vector machines. 
They found that leaving out non-classic predictors hurt prediction performance and that 
the best prediction performance was obtained using both classic and non-classic features. 
Depending on the evaluation measure used, support vector machines (Vapnik, 1995) 
outperformed linear regression in accuracy, but had comparable explanatory power in 
terms of outcome variability. 

Two general conclusions that we can draw after reviewing dozens of studies using 
machine learning approaches to readability prediction are the following. First, the 
combination of rich feature representations of text with machine learning frameworks 
that can exploit them, has proven to be a powerful approach that greatly extends the 
important foundational research on traditional readability formulas to provide accurate, 
flexible, and sophisticated computational assessment of readability. Second, in 
understanding the reasons for improvements of machine learning methods over 
traditional formulas, we typically find that the nature of the features used as input to the 
learning framework usually has more effect on performance than the specific choice of 
learning framework itself. As one example, a representative evaluation was done by Kate 
et al. (2010), who looked at both the effect of feature choice and learning framework 
choice. In varying the features, using only lexical features with the best learning 
framework (bagged decision trees) resulted in a correlation of r = 0.5760, using only 
syntactic features gave r = 0.7010, using language model-based features gave r = 0.7864, 
and using all features together gave the highest correlation of r = 0.8173. Then, using all 
features while varying the learning framework, they reported results using Gaussian 
Process Regression (r = 0.7562), Decision Trees (0.7260), Support Vector Regression 
(0.7915), Linear Regression (0.7984), and Bagged Decision Trees (0.8173). Clearly, the 
choice of learning framework can matter, but the gains in performance obtainable from 
changing the learning framework were, for the most part, smaller than gains obtainable 
from changing the features. In our experience, this is typical of many machine learning 
studies for readability prediction.  

Thus, all things being equal, other considerations beyond basic accuracy may be 
a dominant factor in selecting a learning framework for readability prediction. For 
example, it may be important to attach confidence estimates to readability predictions if 
those predictions are to be used in subsequent tasks like Web search ranking. In such 
cases, probabilistic learning frameworks like Bayesian regression may be appropriate. In 
other scenarios, it may be important for users of the measure to understand why a certain 
prediction was made. Thus, machine learning methods like decision trees (which justify 
a label prediction in terms of a series of decisions on individual features) or regression 
models (where the regression weights can be interpreted as importance factors for the 
features) may be favored. 



 
3.4 Evaluation corpora, measures and results 

In this section we address the questions: what evaluation corpora and measures 
are used to assess the accuracy of readability prediction algorithms?  How accurate are 
current state-of-the-art readability prediction algorithms? 

Evaluation corpora. The graded passage is a basic unit of evaluation in which a 
paragraph or short story is assigned a grade level or difficulty score, typically by experts 
at an educational organization or government entity. Traditionally, the main uses of 
graded passages have been for standardized assessment of reading comprehension, or as 
part of student reading practice. These same graded passages are often used by 
researchers to form a corpus for evaluation of readability prediction measures. However, 
it is very important to understand the process by which the graded passages were created 
and their grade level determined. Frequently, existing readability measures are used to 
calibrate graded passages, and so when evaluating new readability measures, there may 
be a performance bias in favor of those same existing or similar measures that were used 
to calibrate the passages. 

One public resource recently cited in readability evaluations is the collection of 
texts known as Common Core Appendix B, comprising 168 docs that span levels roughly 
corresponding to U.S. grade levels 2-12. The passages are tagged by both level and genre, 
(speech, literature, informative, etc.). Examples are available from 
http://www.corestandards.org/assets/Appendix_B.pdf 

Graded articles for elementary students provided in digital form by the Weekly 
Reader Corporation (www.weeklyreader.com) for research purposes have been another 
popular evaluation resource. For example, Feng et al. (2009) used 1433 graded Weekly 
Reader articles across ages 7-10 as part of their study. Weekly Reader articles in turn 
have formed part of hybrid collections created by researchers. The WeeBit corpus 
(Vajjala & Meurers, 2012) combines two Web-based text sources (Weekly Reader and 
BBC Bitesize) that covers five reading levels, with 625 articles per level. The levels map 
to students in the age range 7-16. Another resource is the 114 articles from Encyclopedia 
Britannica written in two styles, for adults versus children, originally collected by 
Barzilay and Elhaded (2003). Similar two-level easy/difficult corpora are available for 
Wikipedia: simplified English (simple.wikipedia.org) and default English 
(en.wikipedia.org). A few domain-specific corpora are available, such as the math 
readability corpus that contains 120 documents labeled on a difficulty scale from 1 to 7 
(available at this writing from http://wing.comp.nus.edu.sg/downloads/mwc). In general, 
many studies have created their own corpora. Access to most of these research corpora 
can be sought by contacting the authors. For copyright reasons some corpora are 
restricted from being made freely available. Unfortunately, as of this writing there is still 
a lack of significantly-sized, freely available, high-quality corpora for computational 
readability evaluation. 

Evaluation measures. One widely-used evaluation measure in studies of 
computational approaches to readability prediction is rank order correlation (typically 
Spearman’s rho) between the difficulty levels predicted by the readability measure for 
the reference texts and the ‘gold standard’ difficulty levels provided for the same 
reference texts. The advantage of using rank correlation measures for readability 
evaluation is that only the relative rank ordering of texts is used as the basis for 
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comparison. There is no need to normalize the readability scores that may be output from 
the measure, which may be on a very different scale compared to the gold-standard label, 
or with other measures being compared. Rank correlation measures such as Spearman’s 
rho are also robust to outliers, and do not assume an equal interval measurement scale 
for the reference measures. The Pearson correlation of predicted grade level with gold-
standard readability levels is another common evaluation measure. 

When the difficulty level is an ordinal variable, some studies have measured 
prediction accuracy according to the percentage of texts for which the readability 
measure correctly predicted the correct gold-standard level (rounded to the nearest 
integer level if the measure produces a real-valued score). While intuitive, this simplistic 
definition of accuracy ignores the variability of the predictions, i.e. the size of the error 
made for an incorrect prediction, and thus should not be used as the main evaluation 
measure. The Root Mean Squared Error (RMSE) is a more robust measure of accuracy 
used in studies that does penalize algorithms making larger prediction errors compared 
to the gold-standard level. For machine learning models trained from data, the technique 
of cross-validation is typically used to assess the likely variability and generalization 
error. Cross-validation operates by training on different randomly selected subsets of the 
training data, measuring the prediction error over the remaining test data, and computing 
the average prediction error over all cross-validation folds.  

Evaluation results. How accurate are current state-of-the-art readability 
measures?  A recent study by Nelson et al. (2012) assessed the prediction capabilities of 
six text difficulty measures that included the Lexile measure (MetaMetrics), Degrees of 
Reading Power (Questar Assessment), and the Pearson Word Reading Maturity Metric. 
They used five sets of reference texts, which comprised graded passages from various 
standardized state tests and reading tests, and examples from the American Common 
Core Standards as well as the MetaMetrics Oasis student reading practice platform. Rank 
correlations between predicted and actual levels across the six metrics ranged from 0.59 
to 0.79 on standardized state passages. Generally, readability measures that used a 
broader range of linguistic features produced higher correlations than those that just used 
word difficulty and sentence length features. They also found that metrics tended to make 
more accurate distinctions among material at lower grades than material at higher grades.   
 
4 Applications of Computational Readability Assessment 

 
Perhaps as compelling as new computational approaches to readability prediction 

are the applications enabled by such prediction methods. For example, tagging Web 
pages with metadata containing readability estimates enables not only some compelling 
educational scenarios like grade-appropriate content recommendation, but also some 
surprising new capabilities like estimating user motivation during Web search, as we 
describe further below. We now review several important extensions and applications of 
automated readability prediction that have been developed for different tasks and 
populations. 
 
Readability for Second-Language Learners 
 



First-language (L1) readers have very different skills and needs compared to 
second-language (L2) readers. A key difference between L1 and L2 readers is the 
timeline and processes by which language are acquired. For L1 learners, acquisition starts 
in infancy, and primary grammatical structures are typically acquired by age four (Bates, 
2003) – prior to the start of the child’s formal education. L2 readers are often college-age 
or older, have a sophisticated conceptual lexicon, and can grasp complex ideas and 
arguments. Second-language learners, on the other hand, unlike their L1 counterparts, 
are still actively involved in learning the grammar of the target language, so even 
intermediate and advanced students of second languages, who correspond to higher L2 
readability skills, can struggle with grammar in the target language. 

While most development of readability measures has focused on L1 readers, a 
number of recent studies have developed automated readability assessment methods that 
try to account for these special aspects of second-language L2 learners. One of the first 
studies to develop machine learning-based readability measures for L2 readers was that 
of Heilman et al. (2007), who showed that grammatical features may play a more 
important role in second-language readability prediction than in first-language 
readability. Other automated measures for English readability for L2 readers 
subsequently were explored in work by Crossley et al. (2008), who used a rich feature 
set computed by the Coh-Metrix computational tool that included syntactic sentence 
similarity, lexical co-referentiality, and word frequency. Schwarm and Ostendorf’s work 
(2005) on general readability prediction was partly motivated by the need for tools in 
bilingual education.  
 
International Language Support 
 

In the past, the majority of traditional readability assessment research focused on 
English, with other languages adapting and extending those results. For example, after 
the Flesch formula for readability of English text (Flesch, 1948) was published, a series 
of adaptations for European and other languages followed: Kandel and Moles (1958) 
published an adaptation for French, and soon after, José Fernández Huerta (1959) 
published a corresponding formula for Spanish text that is still widely used. Zakaluk & 
Samuel (1988) contains a comprehensive list of traditional readability formulas for a 
wide variety of languages. More recently, much original research has originated with 
languages other than English, and in cases where English studies are published early on, 
adaption to other languages is happening on a more compressed time scale than happened 
with traditional methods. In particular, Asian and European languages have become early 
originators and adapters of improved computational methods. 

Varying degrees of effort are needed to re-purpose machine learning-based 
automated assessment methods originally developed for one language (e.g. English) to 
other languages. This effort depends on factors such as the linguistic complexity of the 
features required by the automated method, the existence of a gold-standard training 
corpus in the target language of appropriate quality and size, and the linguistic nature of 
the target language itself. Computing linguistically complex features, such as syntactic 
difficulty features derived from parse trees, requires natural language processing (NLP) 
tools such as parsers trained for the target language, which may not be available. The 
lack of adequate training corpora in some target languages has arguably been a bottleneck 



in deploying automated processes for a variety of NLP-related tasks, from parsing to 
readability assessment. Finally, knowledge of the nature of the target language will 
influence the type of feature extraction required for readability assessment. For example, 
for highly inflected languages like French or Russian, morphology becomes critical to 
consider as part of computing semantic difficulty features. There are also specialized 
features that are unique to some classes of languages. For example, Chinese readability 
formulas include features based on character symmetry and number of strokes (Lau, 
2006).  

Among those recently applying new semantic resources and learning-based 
computational methods are languages as diverse as Chinese (Lau, 2006; Chen et al., 
2013), German (Vor Der Brück and Hartrumpf. 2007), French (François and Fairon, 
2009), Arabic (Al-Khalifa and Al-Ajlan, 2010), Japanese (Tanaka-Ishii et al., 2010), Thai 
(Daowadung and Chen, 2011) and Swedish (Sjöholm, 2012). Due to the aforementioned 
lack of multi-level graded corpora for languages other than English, researchers have 
built readability models from freely available collections of two or three classes collected 
from the Web. Dell’Orletta et al. (2011), Aluisio et al. (2010), and Klerke and Søgaard 
(2012) report on creating and experimenting with such corpora in Italian, Portuguese and 
Danish respectively.  

 
Supporting Readers with Disabilities 
 

In addition to native and non-native speakers from different locales, readability 
measures are starting to be adapted for those with language learning disabilities and 
dyslexia. Abedi et al. (2003) examined classic readability features for reading test items 
in order to identify those grammatical and cognitive features that differentially contribute 
to reading difficulty for students with disabilities, and thus have a negative impact on 
performance. Their study focused on Grade 8 students and reading assessments, and thus 
further research would be required to understand if and how their findings generalize. 
However, within this population they found that certain surface textual/visual features 
had the highest discriminative power between students with and without disabilities, such 
as the use of long words (greater than seven letters in length), suggesting that changes in 
font, word length and spacing, and reduction in distracting visuals were important factors 
in readability for that target population. Related findings were made by Rello et al. (2013) 
for readers with dyslexia: Comprehension was independent of readability, and word 
length was critical, with shorter words helping comprehension. Sitbon & Bellot (2008) 
developed a sentence readability measure for dyslexic readers based on features informed 
by traditional readability measures (i.e. the French version of the Reading Ease score) as 
well as psycholinguistic studies on the reading processes of dyslexic readers (predicted 
reading time based on phoneme cohesion, number of adverbs and conjunctions). Feng et 
al. (2009) developed and evaluated automated readability assessment tools for readers 
with intellectual disabilities, exploring the use of cognitively-motivated features such as 
the ‘entity density’ – the number of entities mentioned per sentence. They reported higher 
Pearson correlation with comprehension scores (for adults with intellectual disabilities) 
for readability models trained with cognitively-motived features, compared to standard 
lexical and syntactic features. Beyond assessment, techniques for text simplification and 



summarization hold promise as approaches to improving readability for learners with 
special needs, such as dyslexic learners (Nandhini & Balasundaram, 2011). 

 
Computer-assisted Educational Learning Systems 
 

Many educational scenarios require the ability to find information at the right 
level of difficulty, or of the right type of difficulty, for a student. Thus, automated 
readability measures can play a central role in educational settings, particularly for 
language learning and reading tutoring systems. For example, an online language tutor 
might find authentic examples of high-quality Web content that were tailored to 
individual student goals in order to help them learn new vocabulary in realistic contexts. 
Like people, intelligent systems would need an ability to find relevant material at the 
right level of difficulty, quickly and precisely. Unlike people, an application might use 
long, complex queries that expressed multiple specific constraints that good pages should 
satisfy: using the right target vocabulary, at the right level of difficulty, without too many 
other unknown words, and so on. 

One example of such a system is the REAP vocabulary tutor developed at the 
Language Technologies Institute of Carnegie Mellon University (http://reap.cs.cmu.edu). 
REAP uses sophisticated filtering and ranking technology to deliver personalized 
language instruction in English, French, and Portuguese. REAP has helped hundreds of 
second-language learners in classrooms, while also providing a fascinating experimental 
platform to study what helps students learn vocabulary most effectively. In one controlled 
study (Heilman et al., 2010), using REAP’s ability to personalize examples to individual 
students’ self-reported topical interests led to consistent gains in student performance in 
vocabulary acquisition, compared to a control group on the same system without 
personalization. 

In related work, Beinborn et al. (2012) study the applicability of readability 
measures to self-directed language learning, and argue for assessment over individual 
dimensions of readability (as in Figure 2) rather than overall readability predictions, in 
addition to modeling the background knowledge of the learner. We also note the 
development of classroom-oriented tools like ReaderBench (Dascalu, 2014), an 
environment for analyzing text complexity and reading strategies that explicitly 
incorporates rich text representation, including advanced readability features capturing 
discourse structure.  

 
Readability Prediction for the Web  
 

The highly varied, non-traditional nature of Web content, from blog comments to 
search engine result pages to online advertising, leads to new challenges for readability 
prediction. In addition to text with non-traditional structure, Web pages can also contain 
images, video, audio, tables, and other rich layout elements that can influence text 
readability. The ability of a user to understand a document would seem to be a critical 
aspect of that document’s value, and yet a document’s reading difficulty is a factor that 
has typically been ignored in designing access to Web content.  

This lack of attention to readability has been especially true for Web search 
engines – one of the primary ways people access information on the Internet. While some 
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work (e.g. Kanungo and Orr, 2009) has recognized the importance of readability as a 
crucial presentation attribute of search results and other Web summaries, traditionally 
search engines have ignored the reading difficulty of documents and reading proficiency 
of users as part of their retrieval process. For domains like online health care resources 
for the elderly (Becker, 2004) and educational resources for children and students 
(Collins-Thompson et al., 2011), there is a need not only for more accessible content, but 
for better ways to find such content if it already exists. While providing accessible 
content via a search engine requires solving many important problems in interface design, 
content filtering, and results presentation, one fundamental problem is simply that of 
providing relevant results at the right level of reading difficulty.  

An initial step in solving this problem is to label existing Web pages with 
metadata that contains readability estimates. Beyond its utility for basic Web search, 
enriching Web pages with readability metadata has led to a variety of new and sometimes 
surprising applications (Collins-Thompson, 2013). Figure 4 summarizes the impact that 
readability metadata can have in enabling new capabilities for information systems of the 
Web. For example, there is a natural connection with the problem of modeling user and 
site expertise (Kim et al., 2012).  

 
                                          [Insert Figure 4 here] 
 
Unlike traditional texts, Web pages have valuable additional sources of 

information by virtue of their hypertext representation, such as the set of links to and 
from the page, and the anchor text associated with those links. This additional context 
has been used to improve readability estimation for individual pages and predict the 
appropriateness of pages for children. Gyllstrom and Moens (2010) proposed AgeRank, 
an algorithm that provides a binary labeling of Web documents according to its 
appropriateness for children versus adults. The page’s age-appropriateness label is 
inferred using a graph walk algorithm inspired by the PageRank algorithm that Google 
introduced to estimate the importance of Web pages. The AgeRank approach also uses 
features such as page color and font size to help determine the page label. The 
combination of Web graph, vocabulary, and non-vocabulary features with existing 
machine learning methods is likely to provide a good basis for estimating the readability 
of Web documents. In related work, Akamatsu et al. (2011) proposed a method to predict 
the comprehensibility of web pages that uses hyperlink information in addition to textual 
features. The authors showed reasonably high positive correlation between the link 
structure and readability levels of pages on the Web.  

In general, little is currently known about basic readability properties of the Web, 
or the influence of readability on user interactions with Web content. Thus, there is a 
need for large-scale reading-level analysis of the Web that examines properties like the 
relationship of reading level metadata to other meta-data for the same pages, such as a 
page’s topic, analysis of differences in reading level distributions across different 
domains and types of pages, such as high- versus low-traffic pages, and interesting 
hyperlink-based clusters with low and high inter-page differences in reading level. Some 
recent work has begun to study Web readability via user interactions captured in search 
engine query logs. Duarte Torres et al. (2011) performed an analysis of the AOL query 
log to characterize so-called ‘Kids’ queries. A query was labeled as a Kids query if and 



only if it had a corresponding clicked document whose domain was listed as an entry in 
the ‘Kids&Teens’ category of the Open Directory Project. More analysis is needed to 
obtain a better understanding of where and how readability meta-data is likely to be most 
effective for specific search tasks or groups of users on the Web. 

To match users to Web content, a search engine or recommendation algorithm 
needs to represent and estimate the reading proficiency of the user. Children may not 
want material that is too difficult, and experts may want highly technical content, not 
tutorials and introductory texts. Non-native language speakers also form a significant 
population of users who could benefit from search engines that can account for the 
reading level of both users and content. One approach to representing reading proficiency 
is to have users self-identify their level of proficiency or desired material. This is the 
approach Google has used in their deployment of an Advanced Search feature to filter 
results by Low, Medium, and High levels of difficulty (Russell, 2011). However, self-
identified user information may not always be available or reliable, in which case we 
need ways to construct a reading proficiency profile automatically. Initial work on 
automatically estimating a reading proficiency profile for a specific user from their 
interaction with a Web search engine was introduced by Collins-Thompson et al. (2011) 
and by Tan et al. (2012). In future work, we expect that existing learning algorithms could 
be applied to learn user readability profiles based on observations such as the reading 
level of pages that were recently read; semantic or syntactic features of current and past 
queries; previously visited pages or domains from a known list of expert or kids-related 
sites; and other features of the user’s history or behavior. More generally, we foresee the 
need for topic-specific models of readability that reflect a user’s expertise on specific 
topics but not others, in addition to their general reading proficiency. 

Web search engines whose results rankings account for user and content 
readability levels aim to reduce the ‘gap’ between the user’s estimated reading 
proficiency profile and a document’s reading difficulty profile. As with other types of 
personalization, there is a risk-reward tradeoff: We want to promote easy-to-read 
documents closer to the user’s reading proficiency level, while not straying too far from 
the default ranking, which is typically a highly-tuned relevance signal optimized for the 
‘average’ user. Moreover, we may want to show the user pages that ‘stretch’ their reading 
ability in order to help them learn about a new topic.  

Research in applying meta-data derived from reading level prediction to the Web 
and other information retrieval domains is only just beginning. We believe it has the 
potential to improve the performance of a wide range of online tasks for individual users, 
from personalized Web search to educational applications. 
 

5 Classification of Existing Computational Readability Approaches 
 

Before describing future avenues of research, it is worth taking a high-level view 
of recent readability literature to find opportunities to improve the coverage of existing 
research. Figure 5 provides a visual classification of representative papers covered in this 
article that have introduced new automated readability assessment methods, most within 
the past decade, for different tasks or target populations. Papers (identified with a short 
citation key) have been classified in the horizontal direction according to the primary 
type or combination of features used to predict readability, and in the vertical direction 



by primary population or task. Some of the papers span multiple features or target 
populations. We regret that many interesting papers had to be excluded from this 
overview in the interest of clarity and space. This overview is focused on features of text 
and does not include, for example, readability prediction using behavioral cues such as 
eye movements that are not (yet) widely used for computational assessment. 

 
                                         [Insert Figure 5 here] 
 
This visual summary of the automated assessment landscape reveals several areas 

where current research is lacking. First, in general, a limited number of readability 
models have incorporated features of higher-level text structure. This is particularly the 
case for languages other than English, most likely due to the current sparsity of linguistic 
resources and tools needed to estimate and assess models for those locales. Second, the 
same may be said about specialized domains that include technical or scientific writing 
and poetry/prose. For example, initial versions of readability measures have been 
developed for health informatics (e.g. Wang 2006) that typically focus on word 
familiarity. There is also a lack of prediction approaches for more fine-grained readability 
prediction, such as at the sentence level – although researchers have begun exploring this 
area (Pilán et al., 2014), particularly in the context of text simplification (Vajjala & 
Meurers, this issue). In addition, only a few studies have incorporated pragmatic, genre-
related features for readability assessment in any language. Third, there has been little 
published work on automatically learning personalized models of individual reading 
expertise. The closest relevant work so far published in that area (e.g., Collins-Thompson 
et al., 2011) has been related to Web search, where data from query logs has made it 
possible to estimate anonymous, personalized models of user interests and expertise by 
using behavioral signals such as queries issued and documents clicked. These models, in 
turn, have been used to improve the quality of Web search ranking for individual users. 
 

6 Future Research Directions 
 

Based on the state of existing research summarized above and trends in increasing 
availability of data and computing resources, in this section we propose three 
complementary directions in which future research on computational approaches to 
readability modeling and prediction is needed. We then discuss several specific research 
directions in more detail. 
 
1. User-centric models. Text readability has an inherently individual, subjective 

component that current readability measures do not adequately capture. 
However, developing personalized and adaptive measures will require new 
approaches to evaluation and validation: The usual gold-standard approach for 
assigning readability labels is no longer appropriate since generic labels may 
not reflect an individual user’s context or knowledge. Moreover, users are 
dynamic individuals whose expertise and interests evolve over time, and who 
may use different styles of learning and strategies for overcoming 
comprehension difficulties. Adapting users to content (personalized training) 



and adapting content to users (personalized simplification) are two potential 
research directions mentioned below. 

2. Data-driven measures. Machine learning models require data for training – 
which is both their strength and weakness. To obtain labeled data, the use of 
human computation and crowdsourcing are promising avenues that researchers 
are beginning to explore. Readability measures tailored for new types of data, 
such as new content formats like blogs, wikis, online surveys, and writing 
genres, will continue to play an important role in Web interaction, especially 
for educational settings. The dynamic nature of the Web and constant 
introduction of new vocabulary into the world’s languages also mean that 
effective readability measures will need to continuously evolve to reflect these 
changes. Further data-driven readability measures are needed that are easily 
specialized for specific domains, like health care or scientific content, using 
methods that do not require an external corpus or hand-graded labels. One 
attempt in that direction was the unsupervised model of Jameel et al. (2012). 
They proposed an initial model that computed technical readability, making two 
assumptions: first, that documents containing rarer terms deviating from the 
common terms would be more technically difficult, and second, the more 
cohesive the terms (words or short phrases) within a text, the more technically 
simple the text. Further work in this area is needed. 

3. Knowledge-based models: To achieve deeper content understanding for 
readability prediction will require corresponding advances in natural language 
tools and machine learning frameworks – including projects that attempt to 
model world knowledge. One specific research challenge requiring such 
broader knowledge is to identify gaps and unstated assumptions that are a 
higher-level source of difficulty. Another example is that while we have the 
ability to model the topics that are discussed in text, little work has been done 
on capturing the dependencies between concepts. That is, algorithms that can 
‘understand’ what a user needs to know before they can understand a second 
concept will prove invaluable sources of assistance for many tasks. Health 
informatics is one important application area that would benefit from these 
types of advances that capture and exploit deep domain knowledge. 

 
Making progress in these directions will require a combination of new approaches and 
resources. In particular, key aspects of further progress that need to be developed or 
encouraged in the computational linguistics and computer science communities include 
the following. 

 
1. Improved annotated data resources. One challenge to the advancement 
of automated readability research has been the lack of representative corpora 
and associated datasets, especially for languages other than English. The issue 
of digital copyright has been one factor in the difficulty of sharing resources. 
New, freely available corpora need to be developed that would encompass a 
broad variety of text genres, media types, and document properties (from 
longer full texts, to short text snippets) with difficulty labels from many 
human assessors. When constructed properly, such resources would provide 



a basis for training data-driven methods, designing reproducible experiments, 
evaluation of corpus-based methods, and objective comparison across 
algorithms. The advent of crowdsourcing is likely to help with label 
acquisition, as discussed later in this section. 
 
2. Standardized, realistic task definitions and evaluation methodology to 
be applied with the above datasets: It is typical of many papers introducing 
automated text difficulty assessment that they often report results solely in 
terms of correlations with other existing automated measures, without 
checking their effectiveness on a real-world task or desired outcome. A more 
organized effort in the computational linguistics community that standardizes 
task and evaluation criteria, like those already organized annually for other 
tasks such as summarization, entity-finding, and information retrieval, would 
rapidly advance the cause of automated readability assessment. 
 
3. Inter-disciplinary collaborations. The problems associated with 
understanding and modeling text difficulty for individual readers are 
inherently multi-disciplinary. Research progress will depend on paradigms 
and methods spanning linguistics, education, psychology, computer science 
and other fields. Thus, community-building activities such as workshops that 
build cooperation across fields would help to fully develop the potential of 
computational readability methods.  

 
We now give more detail on a few potential research directions that reflect these goals. 
 
Adaptive and personalized readability algorithms 
 

Instead of assuming the reading level of users and documents is something to be 
passively observed, a new class of algorithms that we term adaptive readability 
algorithms could seek optimal strategies and methods for augmenting content or user 
knowledge in order to actively reduce the ‘knowledge gap’ between the author and a 
particular reader. For example, when recommending a Web site to a user whose difficulty 
is higher than the user’s current proficiency, an adaptive readability system could 
perform personalized user training, first identifying important words to learn on the site’s 
pages that the user is not likely to know – e.g., an article about stomach aches might use 
the technical term gastritis. The system could provide links to supporting definitions, 
background material, or a simplified version of the text that uses the more familiar words.  

Such adaptive algorithms would need to be able to solve problems that include: 
enabling personalized readability estimation by computing and maintaining a dynamic 
reading proficiency and domain knowledge model for each user; identifying key 
vocabulary in a document; comparing this key vocabulary against the user’s reading 
proficiency model; and computing the best small subset of critical ‘stretch’ vocabulary 
required to understand most of a document. Other relevant scenarios include intelligent 
tutoring applications that help stretch the student’s vocabulary by retrieving content that 
is slightly above their current reading level, along with satisfying other linguistic 
properties that align with curriculum goals. The REAP intelligent tutor (Collins-



Thompson and Callan, 2004) mentioned earlier is an example of a first step toward this 
type of functionality. In a related direction, Agrawal et al. (2011) used estimates of 
syntactic complexity and key concepts to identify difficult sections of textbooks that 
could benefit from better exposition and to find links to authoritative content. Algorithms 
for automatic text simplification (Siddarthan, 2014) could play a highly complementary 
role to readability measures, producing summarizations with personalized knowledge of 
which words a user knows or doesn’t know based on their reading proficiency profile. 
The educational potential for such augmentations, especially those that are personalized 
based on individual user models, seems very compelling.  
 
Local readability estimation 
 

Any given text might display large variations in difficulty across different 
sections of the document. This is especially true for longer texts commonly occurring 
across a variety of genres, including book chapters, movie scripts, legislative texts, and 
product documentation. As compared to the ‘global’ difficulty estimate for the entire 
document, ‘local’ variations in difficulty can come from a number of factors, including 
changes in topic, quotations of external material, change of character in dialogue, and so 
on. Previous readability studies have explicitly acknowledged this phenomenon by 
prescribing application procedures that sample passages throughout a text, and then 
combining the readability levels of the sampled passages to produce an overall readability 
score.  

Kidwell et al. (2009, 2011) introduced an explicit local readability estimation 
approach that applied a locally weighted version of a global readability model to a sliding 
window of width k words (e.g., 100 words). As the window moved from the beginning 
of the document to the end, a sequence of readability scores was generated, one per 
window. The degree of locality was controlled with the width parameter k, which could 
also be viewed as controlling the degree of smoothing of readability estimates. A narrow 
window emphasized scrutiny of local behavior, such as a specific paragraph or 
conversation.  

Describing local readability variation as an object of study is valuable in itself, 
especially when combined with visualization methods. Local estimation will enable 
future applications as diverse as improved document summarization, identifying 
interesting events in a long text or transcript, and finding difficulty ‘hotspots’ in 
textbooks or documentation that need additional simplification, explanation or 
augmentation. 

 
Real-time readability assessment from behavioral signals 
 

The advent of inexpensive, increasingly accurate sensor equipment and analysis 
software for tracking human behavioral signals, such as eye movement and electrical 
brain activity, provides a promising new source of cues about text difficulty that could 
be integrated as features in prediction settings, especially in real time. Ultimately, such 
signals could assist in estimating individual cognitive difficulty or ease at both the 
decoding level and higher cognitive levels. A recent study by Cole et al. (2012) showed 
that a user’s level of domain knowledge could be estimated from real-time measurements 



of eye movement patterns during search tasks. Researchers have also begun exploring 
non-invasive assessment of reading comprehension using low-cost EEG detectors that 
monitor electrical activity in the brain via detectors on the surface of the scalp. In one 
early study, Chang et al. (2013) found that some EEG signal components appear to be 
sensitive to certain lexical features. For example, they found a strong relationship 
between a word’s age-of-acquisition, and activity in the 30-100Hz EEG frequency band 
for child subjects, along with a number of weaker correlations with other lexical features 
like word frequency in adult subjects. While many technical difficulties remain in 
accurately estimating mental states and activity from such behavioral signals, their 
potential to contribute to our understanding of reader engagement and comprehension is 
a promising avenue for future automated readability assessment methods. 
 
Crowdsourcing for readability annotation 
 

Traditionally, graded passages that serve as learning materials and training 
examples for machine learning approaches to readability have been developed by experts. 
Thus, one significant issue in data-driven reading difficulty modeling and prediction has 
been that it is time-consuming and expensive to obtain the needed difficulty labels 
manually assigned by experts. This is one reason for a subsequent lack of labeled corpora, 
and a large number of expert-labeled examples are typically needed by the learning 
framework to fit the parameters of the readability models.  

The rise of crowdsourcing platforms such as Amazon Mechanical Turk (AMT), 
however, have made it possible to gather readability judgments from a large, diverse 
audience of non-experts that, in aggregate, have the potential to approach expert quality 
at a fraction of the cost. A crowdsourcing platform like AMT or Crowdflower is typically 
a Web-based service that serves as a marketplace connecting people willing to complete 
online tasks for pay (crowd workers) with those needed the online tasks completed with 
good accuracy (task authors). Tasks that are a good fit for crowdsourcing are those that 
are easy for human intelligence, but difficult for machine intelligence. The assessment of 
a complex phenomenon like text difficulty certainly qualifies as a good fit. Typically, the 
quality of the non-expert crowdsourcing labels is maintained through the use of 
mechanisms such as randomly inserted assessment tasks using a small number of known, 
expert-labeled answers which the crowd worker must answer at a high level of accuracy 
in order to be fully compensated for their work. As an example of cost, to obtain more 
than 5,000 reliable pair-judgments over several hundred passages (Chen et al., 2013) cost 
on the order of US$250, or about 5 cents per pair. 

One of the first studies to examine the use of crowdsourcing to obtain readability 
assessments was that of De Clercq et al. (2013). Their study used expert readers to rank 
texts according to relative difficulty. They compared these expert rankings to rankings 
derived from the use of a crowdsourcing tool where non-expert users provided pairwise 
comparisons about the relative difficulty of two texts. The non-expert labels were of 
comparable quality to the expert labels. Independently, Chen et al. (2013) developed an 
efficient statistical model to combine the pairwise assessments from a budgeted number 
of crowd workers into an aggregate ranking of reading difficulty. Their study introduced 
an active learning method that was shown to reduce the cost (in terms of the number of 



non-expert crowd assessments) required to achieve a given level of ranking accuracy 
compared to a reference ranking generated from expert labels. 

Given the volume and variety of labelled data that will be required to drive the 
retraining of future machine learning-based methods for different tasks, domains, and 
target populations, algorithms that optimize efficient crowdsourcing of readability labels 
or features are likely to be a fruitful tool, and an on-going research in their own right. 
However, while crowdsourcing appears to show promise as a source of readability 
annotations, several caveats are also in order. First, the quality and nature of results 
obtained from crowdsourcing can be very sensitive to details in the task and interface 
design (Kittur et al., 2008). Second, readability assessment is highly dependent on the 
reader’s profile, and thus may suffer in generic crowdsourcing scenarios. Third, some 
researchers have raised ethical and legal issues, such as potential worker exploitation, in 
the use of crowdsourcing platforms (e.g. Fort et al., 2011). Beyond crowdsourcing, other 
avenues such as ‘games with a purpose’ (von Ahn & Dabbish, 2008) that could generate 
annotation data or solve related computational readability problems as an outcome of 
game play, may serve as fruitful alternatives to explore in future research. 
 

7 Conclusion 
 

Computational methods for readability assessment promise to provide a powerful 
technological tool that will touch many aspects of how we interact with, learn from, and 
discover information. While the nature of texts and readers will continue to evolve, the 
basic need for algorithmic methods that model and estimate text difficulty and readability 
is as strong as ever. The past ten years have seen a fundamental shift in approach: from 
traditional general-purpose formulas with two or three variables that are fitted with small 
amounts of expert-labelled data, to machine-learning based frameworks that use a rich 
feature representation of documents trained from large corpora using aggregated, non-
expert crowdsourced labels, along multiple dimensions of representation that capture 
deeper aspects of text understanding and difficulty.  

Our review of the field highlighted the lack of published research in areas such 
as data-driven and personalized readability measures, and test collections and evaluation 
measures for non-traditional texts. We believe this is due to two factors: the novelty of 
the field, and the methodological and technical difficulties in developing and evaluating 
reliable personalized models. Future challenges include balancing the relevance and 
comprehensibility of texts, and richer document representations for enhancing readability 
dimensions. The next ten years will bring further developments in personalized, data-
driven, deep knowledge-based models of text readability. It seems likely that statistical 
machine learning will play a key role in future development of readability measures, 
providing a principled framework that can learn from data and handle the rich sets of 
complex features and decision spaces that are required to capture deeper text 
understanding.  

Computational text readability assessment continues to be a promising field that 
tackles problems at the heart of human language understanding. The need for automated 
assessment of text readability will exist as long as there is human language and the desire 
for people to learn and inform each other, and as long as our computational models of 
language and language acquisition continue to grow. User-centric, data-driven, 



knowledge-based text readability assessment is an exciting and promising research 
direction that connects deeply with our most difficult research problems in modeling and 
interpreting human language. Advances in text readability assessment will act as a key 
that unlocks a rich array of applications that help people learn and communicate, whether 
in elementary school or for a lifetime.  
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Figure 1: Overview of a typical computational reading difficulty estimation pipeline. 



 

Figure 2:  Key aspects of text readability, ordered from lowest level (text legibility) to highest level 
(user interest and background). These levels are one way to categorize the types of features used 
by text readability measures for automated assessment. 
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Lexical/semantic difficulty: 
• Average number of syllables per word 
• Out-of-vocabulary rate relative to a large corpus 
• Type-token ratio: the ratio of unique terms to total terms observed 
• Ratio of function words (compared to a general corpus in the target language) 
• Ratio of pronouns (compared to a general corpus in the target language) 
• Language model perplexity (comparing the text to generic or genre-specific models) 

 
Syntactic difficulty: 

• Average sentence length (in words or tokens) 
• Proportion of incomplete parses 
• Parse structure features: 

o Average parse tree height 
o Average number of noun phrases per sentence 
o Average number of verb phrases per sentence 
o Average number of subordinate clauses per sentence 

 
Figure 3:  Examples of typical lexical and syntactic features used for reading difficulty 
prediction, from Schwarm and Ostendorf (2005) and Kate et al. (2010). 
 



  

 

Figure 4: How computing metadata with readability estimates for Web pages enables a surprisingly 
wide variety of tasks and applications. 
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Figure 5:  Visual summary of representative literature covered in this article that has 
introduced new automated readability assessment methods for different target populations. 
Papers (shown by citation key) have been classified in the horizontal direction according to 
the primary type or combination of features used to predict readability, and in the vertical 
direction by primary population or task target. The citation key concatenates the first letters 
of up to three initial authors last names (upper case) and appends the year, e.g. [FEH09] 
represents the 2009 paper of Feng, Elhadad, and Huenerfauth. (‘+’ means et al.) In case of 
ambiguity, additional lower-case letters are added from the first author’s name. 
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