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Abstract

Query expansion is a long-studied approach for improving retrieval effectiveness
by enhancing the user’s original query with additional related words. Current
algorithms for automatic query expansion can often improveretrieval accuracy
on average, but are notrobust: that is, they are highly unstable and have poor
worst-case performance for individual queries. To addressthis problem, we in-
troduce a novel formulation of query expansion as a convex optimization problem
over a word graph. The model combines initial weights from a baseline feed-
back algorithm with edge weights based on word similarity, and integrates simple
constraints to enforce set-based criteria such as aspect balance, aspect coverage,
and term centrality. Results across multiple standard testcollections show consis-
tent and significant reductions in the number and magnitude of expansion failures,
while retaining the strong positive gains of the baseline algorithm. Our approach
does not assume a particular retrieval model, making it applicable to a broad class
of existing expansion algorithms.

1 Introduction

A major goal of current information retrieval research is todevelop algorithms that can improve
retrieval effectiveness by inferring a more complete picture of the user’s information need, beyond
that provided by the user’s query text. Aquery model captures a richer representation of the context
and goals of a particular information need. For example, in the language modeling approach to
retrieval [9], a simple query model may be a unigram languagemodel, with higher probability given
to terms related to the query text. Once estimated, a query model may be used for such tasks as
query expansion, suggesting alternate query terms to the user, or personalizing search results [11].
In this paper, we focus on the problem of automatically inferring a query model from the top-ranked
documents obtained from an initial query. This task is knownas pseudo-relevance feedback or blind
feedback, because we do not assume any direct input from the user other than the initial query text.
Despite decades of research, even state-of-the-art methods for inferring query models – and in par-
ticular, pseudo-relevance feedback – still suffer from some serious drawbacks. First, past research
efforts have focused largely on achieving good average performance, without regard for thestability
of individual retrieval results. The result is that currentmodels are highly unstable and have bad
worst-case performance for individual queries. This is onesignificant reason that Web search en-
gines still make little or no use of automatic feedback methods. In addition, current methods do not
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adequately capture the relationships or tradeoffs betweencompeting objectives, such as maximizing
the expected relevance weights of selected words versus therisks of those choices. This is turn leads
to several problems.
First, when term risk is ignored, the result will be less reliable algorithms for query models, as we
show in Section 3. Second, selection of expansion terms is typically done in a greedy fashion by
rank or score, which ignores the properties of the termsas a set and leads to the problem of aspect
imbalance, a major source of retrieval failures [2]. Third,few existing expansion algorithms can
operateselectively; that is, automatically detect when a query is risky to expand, and then avoid or
reduce expansion in such cases. The few algorithms we have seen that do attempt selective expansion
are not especially effective, and rely on sometimes complexheuristics that are integrated in a way
that is not easy to untangle, modify or refine. Finally, for a given task there may be additional
factors that must be constrained, such as the computationalcost of sending many expansion terms
to the search engine. To our knowledge such situations are not handled by any current query model
estimation methods in a principled way.
To remedy these problems, we need a better theoretical framework for query model estimation: one
that incorporates both risk and reward data about terms, that detect risky situations and expands
selectively, that can incorporate arbitrary additional problem constraints such as a computational
budget, and has fast practical implementations.
Our solution is to develop a novel formulation of query modelestimation as a convex optimization
problem [1], by casting the problem in terms of constrained graph labeling. Informally, we seek
query models that use a set of terms with high expected relevance but low expected risk. This idea
has close connections with models of risk in portfolio optimization [7]. An optimization approach
frees us from the need to provide a closed-form formula for term weighting. Instead, we specify a
(convex) objective function and a set of constraints that a good query model should satisfy, letting
the solver do the work of searching the space of feasible query models. This approach gives a natural
way to perform selective expansion: if there is no feasible solution to the optimization problem, we
do not attempt to expand the original query. ore generally, it gives a very flexible framework for
integrating different criteria for expansion as optimization constraints or objectives.
Our risk framework consists of two key parts. First, we seek to minimize an objective function that
consists of two criteria: term relevance, and term risk. Term risk in turn has two subcomponents:
the individual risk of a term, and theconditional risk of choosing one term given we have already
chosen another. Second, we specify constraints on what ‘good’ sets of terms should look like. These
constraints are chosen to address traditional reasons for query drift. With these two parts, we obtain
a simple convex program for solving for the relative term weights in a query model.

2 Theoretical model

Our aim in this section is to develop a constrained optimization program to find stable, effective
query models. Typically, our optimization will embody a basic tradeoff between wanting to use
evidence that has strong expected relevance, such as expansion terms with high relevance model
weights, and the risk or confidence in using that evidence. Webegin by describing the objectives
and constraints over term sets that might be of interest for estimating query models. We then describe
a set of (sometimes competing) constraints whose feasible set reflects query models that are likely to
be effective and reliable. Finally, we put all these together to form the convex optimization problem.

2.1 Query model estimation as graph labeling

We can gain some insight into the problem of query model estimation by viewing the process of
building a query as a two-classlabeling problem over terms. Given a vocabularyV , for each term
t ∈ V we decide to either add termt to the query (assign label ‘1’ to the term), or to leave it out
(assign label ‘0’). The initial query terms are given a labelof ‘1’. Our goal is to find a function
f : V → {0, 1} that classifies the finite setV of |V | = K terms, choosing one of the two labels for
each term. The terms are typically related, so that the pairwise similarityσ(i, j) between any two
termswi, wj is represented by the weight of the edge connectingwi andwj in the undirected graph
G = (V,E), whereE is the set of all edges. The cost functionL(f) captures our displeasure for a
givenf , according to how badly the following two criteria are givenby the labeling produced byf .
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Figure 1: Query model estimation as a constrained graph labeling problem using two labels (rele-
vant, non-relevant) on a graph of pairwise term relations. The square nodes X, Y, and Z represent
query terms, and circular nodes represent potential expansion terms. Dark nodes represent terms
with high estimated label weights that are likely to be addedto the initial query. Additional con-
straints can select sets of terms having desirable properties for stable expansion, such as a bias
toward relevant labels related to multiple query terms (right).

• The costci:k gives the cost of labeling termti with labelk ∈ {0, 1}.

• The costσi,j · d(f(i), f(j)) gives the penalty for assigning labelsf(i) andf(j) to items
i andj when their similarity isσi,j . The functiond(u, v) is a metric that is the same for
all edges. Typically, similar items are expected to have similar labels and thus a penalty is
assigned to the degree this expectation is violated.

For this study, we assume a very simple metric in whichd(i, j) = 1 if i 6= j and0 otherwise. In
a probabilistic setting, finding the most probable labelingcan be viewed as a form of maximum a
posteriori (MAP) estimation over the Markov random field defined by the term graph.
Although this problem is NP-hard for arbitrary configurations, various approximation algorithms
exist that run in polynomial time by relaxing the constraints. Here we relax the condition that the
labels be integers in{0, 1} and allow real values in[0, 1]. A review of relaxations for the more
general metric labeling problem is given by Ravikumar and Lafferty [10]. The basic relaxation we
use is

maximize
∑

s;j

cs;jxs;j +
∑

s,t;j,k

σs,j;t,kxs;jxt;k

subject to
∑

j

xs;j = 1

0 ≤ xs;j ≤ 1.

(1)

The variablexs;j denotes the assignment value of labelj for terms. Our method obtains its initial
assignment costscs;j from a baseline feedback method, given an observed query andcorresponding
set of query-ranked documents. For our baseline expansion method, we use the strong default feed-
back algorithm included in Indri 2.2 based on Lavrenko’s Relevance Model [5]. Further details are
available in [4].
In the next section, we discuss how to specify values forcs;j andσs,j;t,k that make sense for query
model estimation. For a two-label problem wherej ∈ {0, 1}, the values ofxi for one label com-
pletely determine the values for the other, since they must sum to 1, so it suffices to optimize over
only thexi;1, and for simplicity we simply refer toxi instead ofxi;1.
Our goal is to find a set of weightsx = (x1, . . . , xK) where eachxi corresponds to the weight
in the final query model of termwi and thus is the relative value of each word in the expanded
query. The graph labeling formulation may be interpreted ascombining two natural objectives:
the first maximizes the expected relevance of the selected terms, and the second minimizes the
risk associated with the selection. We now describe each of these in more detail, followed by a
description of additional set-based constraints that are useful for query expansion.



2.2 Relevance objectives

Given an initial set of term weights from a baseline expansion methodc = (c1, . . . , cK) theexpected
relevance over the vocabularyV of a solutionx is given by the weighted sumc · x =

∑

k ckxk.
Essentially, maximizing expected relevance biases the ‘relevant’ labels toward those words with the
highestci values. Other relevance objective functions are also possible, as long as they are convex.
For example, ifc andx represent probability distributions over terms, then we could replacec · x
with KL(c||x) as an objective since KL-divergence is also convex inc andx.
The initial assignment costs (label values)c can be set using a number of methods depending on
how scores from the baseline expansion model are normalized. In the case of Indri’s language
model-based expansion, we are given estimates of the Relevance Modelp(w|R) over the highest-
rankingk documents1. We can also estimate a non-relevance modelp(w|N) using the collection to
approximate non-relevant documents, or using thelowest-ranked k documents out of the top 1000
retrieved by the initial queryQ. To setcs:1, we first computep(R | w) for each wordw via Bayes
Theorem,

p(R|w) =
p(w|R)

p(w|R) + p(w|N)
(2)

assumingp(R) = p(N) = 1/2. Using the notationp(R|Q) andp(R|Q̄) to denote our belief that
any query word or non-query word respectively should have label 1, the initial expected label value
is then

cs:1 =

{

p(R|Q) + (1 − p(R|Q)) · p(R|ws) s ∈ Q

p(R|Q̄) · p(R|ws) s /∈ Q
(3)

for the ‘relevant’ label. We usep(R|Q) = 0.75 andp(R|Q̄) = 0.5. Since the label values must sum
to one, for binary labels we havecs:0 = 1 − cs:1.

2.3 Risk objectives

Optimizing for expected term relevance only considers one dimension of the problem. A second
critical objective is minimizing the risk associated with aparticular term labeling. We adapt an
informal definition of risk here in which the variance of the expected relevance is a proxy for un-
certainty, encoded in the matrixΣ with entriesσij . Using a betting analogy, the weightsx = {xi}
represent wagers on the utility of the query model terms. A risky strategy would place all bets on the
single term with highest relevance score. A lower-risk strategy would distribute bets among terms
that had both a large estimated relevance and low redundancy, to cover all aspects of the query.

Conditional term risk. First, we consider theconditional risk σij between pairs of termswi and
wj . To quantify conditional risk, we measure the redundancy ofchoosing wordwi given thatwj

has already been selected. This relation is expressed by choosing a symmetric similarity measure
σ(wi, wj) betweenwi andwj , which is rescaled into a distance-like measured(wi, wj) with the
formula

σij = d(wi, wj) = γ exp(−ρ · σ(wi, wj)) (4)

The quantitiesγ andρ are scaling constants that depend on the output scale ofσ, and the choice
of γ also controls the relative importance of individual vs. conditional term risk. In this study, our
σ(wi, wj) measure is based on term associations over the2× 2 contingency table of term document
counts. For this experiment we used the Jaccard coefficient:future work will examine others.

Individual risk. We say that a term related to multiple query terms exhibitsterm centrality. Previ-
ous work has shown that central terms are more likely to be more effective for expansion than terms
related to few query terms [3] [12]. We use term centrality toquantify a term’s individual risk, and
define it for a termwi in terms of the vectordi of all similarities ofwi with all query terms. The
covariance matrixΣ then has diagonal entries

σii = ‖di‖
2
2 =

∑

wq∈Q

d2(wi, wq) (5)

1We use the symbolsR andN to represent relevance and non-relevance respectively.
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Figure 2: Three complementary criteria for expansion term weighting on a graph of candidate terms,
and two query termsX andY . The aspect balance constraint (left) prefers sets of expansion terms
that balance the representation ofX andY . The aspect coverage constraint (center) increases recall
by allowing more expansion candidates within a distance threshold of each term. Term centering
(right) prefers terms near the center of the graph, and thus more likely to be related to both terms,
with minimum variation in the distances toX andY .

Other definitions of centrality are certainly possible, e.g. depending on generative assumptions for
term distributions.
We can now combine relevance and risk into a single objective, and control the tradeoff with a single
parameterκ, by minimizing the function

L(x) = −cT x +
κ

2
xT Σx. (6)

If Σ is estimated from term co-occurrence data in the top-retrieved documents, then the condition
to minimizexT Σx also encodes the fact that we want to select expansion terms that are not all in
the same co-occurrence cluster. Rather, we prefer a set of expansion terms that are more diverse,
covering a larger range of potential topics.

2.4 Set-based constraints

One limitation of current query model estimation methods isthat they typically make greedy term-
by-term decisions using a threshold, without considering the qualities of the set of terms as a whole.
A one-dimensional greedy selection by term score, especially for a small number of terms, has the
risk of emphasizing terms related to one aspect and not others. This in turn increases the risk of
query drift after expansion. We now define several useful constraints on query model terms:aspect
balance, aspect coverage, andquery term support. Figure 2 gives graphical examples of aspect
balance, aspect coverage, and the term centrality objective.

Aspect balance. We make the simplistic assumption that each of a query’s terms represents a
separate and unique aspect of the user’s information need. We create the matrixA from the vectors
φk(wi) for each query termqk, by settingAki = φk(wi) = σik. In effect,Ax gives the projection
of the solution modelx on each query term’s feature vectorφk. We define the requirement thatx be
in balance to be that the vectorAx be element-wise close to the mean vectorµ of theφk, within a
toleranceζµ, which we denote (with some flexibility in notation) by

Ax � µ + ζµ. (7)

To demand an exact solution, we setζµ = 0. In reality, some slack is desirable for slightly better
results and so we use a small positive value forζµ such as1.0.

Query term support. Another important constraint is that the set of initial query termsQ be
predicted by the solution labeling. We express this mathematically by requiring that the the weights
for the ‘relevant’ label on the query termsxi:1 lie in a rangeli ≤ xi ≤ ui and in particular be above
the thresholdli for xi ∈ Q. Currentlyli is set to a default value of0.95 for all query terms, and zero
for all other terms.ui is set to 1.0 for all terms. Term-specific values forli may also be desirable to
reflect the rarity or ambiguity of individual query terms.



minimize − cT x +
κ

2
xT Σx Relevance, term centrality & risk (9)

subject to Ax � µ + ζµ Aspect balance (10)

gi
T x ≥ ζi, wi ∈ Q Aspect coverage (11)

li ≤ xi ≤ ui, i = 1, . . . ,K Query term support, positivity (12)

Figure 3: The basic constrained quadratic program QMOD usedfor query model estimation.

Aspect coverage. One of the strengths of query expansion is its potential for solving the vocabu-
lary mismatch problem by finding different words to express the same information need. Therefore,
we can also require a minimal level ofaspect coverage. That is, we may require more than just that
terms are balanced evenly among all query terms: we may care about the absolute level of support
that exists. For example, suppose our information sources are feedback terms, and we have two
possible term weightings that are otherwise feasible solutions. The first weighting has only enough
terms selected to give a minimal non-zero but even covering to all aspects. The second weighting
scheme has three times as many terms, but also gives an even covering. Assuming no conflicting
constraints such as maximum query length, we may prefer the second weighting because it increases
the chance we find the right alternate words for the query, potentially improving recall.
We denote the set of distances to neighboring words of query termqi by the vectorgi. The projection
gi

T x gives us the aspect coverage, or how well the words selected by the solutionx ‘cover’ term
qi. The more expansion terms nearqi that are given higher weights, the larger this value becomes.
When only the query term is covered, the value ofgi

T x = σii. We want the aspect coverage for
each of the vectorsgi to exceed a thresholdζi, and this is expressed by the constraint

gi
T x ≥ ζi. (8)

Putting together the relevance and risk objectives, and constraining by the set properties, results in
the following complete quadratic program for query model estimation, which we call QMOD and is
shown in Figure 3. The role of each constraint is given in italics.

3 Evaluation

In this section we summarize the effectiveness of using the QMOD convex programs to estimate
query models and examine how well the QMOD feasible set is calibrated to the empirical risk of
expansion. For space reasons we are unable to include a complete sensitivity analysis of the effect
of the various constraints. The best risk-reward tradeoff is generally obtained with a strong query
support constraint (li near 1.0) and moderate balance between individual and conditional term risk.
We used the following default values for the control parameters: κ = 1.0, γ = 0.75, ζµ = 1.0,
ζi = 0.1, ui = 1.0, andli = 0.95 for query terms andli = 0 for non-query terms.

3.1 Robustness of Model Estimation

In this section we evaluate the robustness of the query models estimated using the convex program
in Fig. 3 over several TREC collections. We created a histogram of MAP improvement across sets
of topics. This is a fine-grained look that shows the distribution of gain or loss in MAP for a given
feedback method. Using these histograms we can distinguishbetween two systems that might have
the same number of failures, but which help or hurt queries byvery different magnitudes. The
number of queries helped or hurt by expansion is shown, binned by the loss or gain in average
precision by using feedback. The baseline feedback here wasIndri 2.2 (Modified Relevance Model
with stoplist) [8]. The robustness histogram with results combined for all collections is shown in
Fig. 4. Both algorithms achieve the same gain in average precision over all collections (15%). Yet
considering the expansion failures whose loss in average precision is more than 10%, the robust
version hurts more than 60% fewer queries.
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Figure 4: Comparison of expansion robustness for four TREC collections combined (TREC 1&2,
TREC 7, TREC 8, wt10g). The histograms show counts of queries, binned by percent change
in average precision. The dark bars show robust expansion performance using the QMOD convex
program with default control parameters. The light bars show baseline expansion performance using
term relevance weights only. Both methods improve average precision by an average of 15%, but
the robust version hurts significantly fewer queries, as evident by the greatly reduced tail on the left
histogram (queries hurt).

3.2 Calibration of Feasible Set

If the constraints of a convex program are well-designed forstable query expansion, the odds of an
infeasible solution should be much greater than 50% for queries that are risky. In those cases, the
algorithm will not attempt to enhance the query. Conversely, the odds of finding a feasible query
model should ideally increase for thoese queries that are more amenable to expansion. Overall, 17%
of all queries had infeasible programs. We binned these queries according to the actual gain or loss
that would have been achieved with the baseline expansion, normalized by the original number of
queries appearing in each bin when the (non-selective) baseline expansion is used. This gives the
log-odds of reverting to the original query for any given gain/loss level.
The results are shown in in Figure 5. As predicted, the QMOD algorithm is more likely to decide
infeasibility for the high-risk zones at the extreme ends ofthe scale. Furthermore, the odds of finding
a feasible solution do indeed increase directly with the actual benefits of using expansion, up to a
point where we reach an average precision gain of 75% and higher. At this point, such high-reward
queries are considered high risk by the algorithm, and the likelihood of reverting to the original
query increases dramatically again. This analysis makes clear that the selective expansion behavior
of the convex algorithm is well-calibrated to the true expansion benefit.

4 Conclusions

We have presented a new research approach to query model estimation, showing how to adapt convex
optimization methods to the problem by casting it as constrained graph labeling. By integrating
relevance and risk objectives with additional constraintsto selectively reduce expansion for the most
risky queries, our approach is able to significantly reduce the downside risk of a strong baseline
algorithm while retaining its strong gains in average precision.
Our expansion framework is quite general and easily accomodates further extensions and refine-
ments. For example, similar to methods used for portfolio optimization [6] we can assign a compu-
tational cost to each term having non-zero weight, and add budget constraints to prefer more efficient
expansions. In addition, sensitivity analysis of the constraints is likely provide useful information
for active learning: interesting extensions to semi-supervised learning are possible to incorporate
additional observations such as relevance feedback from the user. Finally, there are a number of



Figure 5: The log-odds of reverting to the original query as aresult of selective expansion. Queries
are binned by the percent change in average precision if baseline expansion were used. Columns
above the line indicate greater-than-even odds that we revert to the original query.

higher-level control parameters and it would be interesting to determine the optimal settings. The
values we use have not been extensively tuned, so that further performance gains may be possible.
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