
39

Using the Crowd to Improve Search Result Ranking and the Search
Experience

YUBIN KIM, Carnegie Mellon University
KEVYN COLLINS-THOMPSON, University of Michigan
JAIME TEEVAN, Microsoft Research

Despite technological advances, algorithmic search systems still have difficulty with complex or subtle infor-
mation needs. For example, scenarios requiring deep semantic interpretation are a challenge for computers.
People, on the other hand, are well-suited to solving such problems. As a result, there is an opportunity for
humans and computers to collaborate during the course of a search in a way that takes advantage of the
unique abilities of each. While search tools that rely on human intervention will never be able to respond
as quickly as current search engines do, recent research suggests that there are scenarios where a search
engine could take more time if it resulted in a much better experience. This paper explores how crowd-
sourcing can be used at query time to augment key stages of the search pipeline. We first explore the use
of crowdsourcing to improve search result ranking. When the crowd is used to replace or augment tradi-
tional retrieval components such as query expansion and relevance scoring, we find that we can increase
robustness against failure for query expansion and improve overall precision for results filtering. However,
the gains that we observe are limited and unlikely to make up for the extra cost and time that the crowd
requires. We then explore ways to incorporate the crowd into the search process that more drastically alter
the overall experience. We find that using crowd workers to support rich query understanding and result
processing appears to be a more worthwhile way to make use of the crowd during search. Our results con-
firm that crowdsourcing can positively impact the search experience, but suggest that significant changes to
the search process may be required for crowdsourcing to fulfill its potential in search systems.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval—Search process

Additional Key Words and Phrases: Slow search, crowdsourcing, information retrieval.

ACM Reference Format:
Yubin Kim, Kevyn Collins-Thompson, and Jaime Teevan, 2015. Using the Crowd to Improve Search Result
Ranking and the Search Experience. ACM Trans. Intell. Syst. Technol. 9, 4, Article 39 (March 2010), 24
pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
There are a number of aspects of the Web search process that are particularly hard
for search engines to address automatically. While computers can deal with large vol-
umes of data and consider multiple alternatives, it is hard for them to algorithmically
understand a person’s information need or subtle meaning in a document. Tasks that
require deep understanding are currently better suited for people. Recent research in
human computation suggests that there is an opportunity for humans and computers
to collaborate during search in a way that takes advantage of the unique contribu-

Author’s addresses: Y. Kim, Language Technologies Institute, Carnegie Mellon University; K. Collins-
Thompson, University of Michigan; J. Teevan, Microsoft Research, Redmond, WA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2010 ACM 2157-6904/2010/03-ART39 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:2 Y. Kim et al.

tions that each can provide. Via crowdsourcing, crowd workers can provide query and
document understanding, while computers can provide fast, large-scale analysis.

While crowd-based approaches to complex tasks have worked well for everything
from word processing [Bernstein et al. 2010a] to itinerary planning [Zhang et al. 2012],
they are challenging to incorporate into Web search because the crowd needs more time
to process information than computers do. Despite advances with real-time crowd-
sourcing [Lasecki and Bigham 2014], search tools that rely on human intervention will
never be able to respond to a query in a fraction of a second. However, recent research
suggests that there are scenarios where a search engine could take significantly longer
than this to return relevant content if the additional time were to provide a much bet-
ter experience [Teevan et al. 2013; Teevan et al. 2014]. People often invest minutes,
hours, or even days in complex or exploratory search tasks such as planning a vaca-
tion or researching a medical diagnosis. For over half of the time that people spend
using a search engine, they are typically engaged in multi-query search sessions that
take minutes or hours [Dumais 2013]. For important, difficult, or complex queries like
these, crowdsourcing may be able to augment the search experience despite requiring
additional time [Teevan et al. 2013].

In this paper we compare different strategies for incorporating crowdsourcing into
the search process. After a discussion of related work (Section 2), we provide an
overview of the different stages in the search process where a crowd worker’s unique
ability to understand text can be used. We argue that crowd workers are particularly
valuable because they can extract meaning from a user’s query and the documents
identified as relevant to the query by the underlying search engine (Section 3). We
show that crowd workers can be used to improve the search result ranking by replac-
ing the components that address query and document understanding in a traditional
information retrieval pipeline (Section 4). We find using people instead of algorithms
for query expansion and result filtering reduces query variance to produce more sta-
ble results, but does not provide the large gains in retrieval effectiveness that would
probably be necessary to make the use of crowdsourcing worthwhile, particularly for
longer, more difficult queries. This prompts us to explore the use of crowdsourcing to
enable new search experiences where searchers can express rich queries and receive
effectively synthesized search results. Crowd workers help us understand rich entity
queries by identifying and extracting attributes such as location and business hours
from descriptive queries, and then provide rich result processing by producing detailed
judgments on how much a candidate result matched the query on various attributes.
The rich, structured results from this process enable us to create a new search ex-
perience for users: we find that this exploration is very well received (Section 5). By
studying several different ways to incorporate crowdsourcing into a search system, we
provide insight into how search tools might create new and better search experiences,
using human insight to compensate for algorithmic challenges and limitations.

2. RELATED WORK
Research in crowd-powered systems has explored how human computation can help
solve information retrieval related problems. Most prior work in this area focused on
using crowdsourcing to obtain human relevance judgments for evaluation [Alonso et al.
2008; Chen et al. 2013]. However, recent work has begun to look at how to use crowd
workers to address users’ information needs in various forms. Because of people’s ex-
pectations around speed in search [Schurman and Brutlag 2009], the use of online
crowds has primarily been explored in search contexts where people already expect
long wait times. For example, socially-embedded search engines monitor social net-
working sites and provide automated answers [Hecht et al. 2012; Jeong et al. 2013].
Other question-answering systems have used human users to help perform expert-

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:3

finding [Richardson and White 2011], and market-based real-time services [Hsieh and
Counts 2009]. However, stringent time constraints in search are not always necessary.
Researchers are currently exploring a space called slow search, where quality is prior-
itized before speed for difficult queries where users are willing to wait [Teevan et al.
2013].

Our framework breaks down the task of retrieving documents related to a query
into subtasks, each of which may be handled by automated or human-powered meth-
ods that include crowdsourcing. In a previous instance of this approach, Demartini
et al. [2013] introduced a related approach with CrowdQ, a system for crowdsourced
query understanding of complex structured queries. This work focused on query un-
derstanding and could easily fit into the framework presented in this paper, as could
other modules that take additional time to run but do not require human intervention
[Crabtree 2007].

There are also several studies [Franklin et al. 2011; Franklin et al. 2013; Marcus
et al. 2011] that present systems which use the crowd to compute structured queries. In
addition, researchers have built crowd systems to handle specific tasks such as image
searching [Yan et al. 2010]. Bozzon et al. [2012] describe CrowdSearcher, a general
platform for answering a class of queries such as ranking and clustering using social
media networks. In our work, rather than building a social media platform for specific
tasks, we more broadly explore different ways of using general crowd computation
outside of a social media network.

The most closely related work to our explorations into crowd-based ranking was done
by Parameswaran et al. [2013], who introduced an API for including crowdsourcing
into search called DataSift. DataSift provides crowd-powered query reformulation and
result filtering components, similar to what we explore in Section 4. Using 30 hand-
crafted queries, they conducted experiments on image and product corpora to demon-
strate the efficacy of the approach. We complement and extend this work by using a set
of 150 queries that combines queries from the Text REtrieval Conference (TREC) and
queries extracted from commercial search logs. We also focus on text rather than im-
ages. Our work provides new insight into the effect of crowdsourcing on robustness: we
find that, in contrast to the hand-crafted queries, the performance of difficult queries
can be harmed by crowdsourcing if crowd workers are unsure of the queries’ meaning.
Furthermore, our work goes beyond the approaches explored by DataSift by experi-
menting with new search pipelines to explore new types of queries and deeper, rich
result understanding with crowdsourcing (Section 5).

Several existing studies have explored approaches that use the crowd to change the
existing search experience. For example, Law and Zhang [2011] discuss how to use
crowd computing to take a high-level user goal (such as ‘I want be healthier’) and
identify individual subtasks, with the aim of finding Web search queries whose results
help accomplish the high-level goal. While this work uses the crowd to help users plan
a sequence of queries, we use crowdsourcing to address the underlying Web retrieval
process for a single query. Another related use of crowdsourcing is presented by Bern-
stein et al. [2010b]. They explore a method of automatically generating inline answers
using crowdsourcing for queries where curated answers are not available. The meth-
ods they use to extract short answers from documents bear some resemblance to the
result understanding step in our experiments with entity queries. However, in Bern-
stein et al. [2010b], workers are required to actively extract text from a Web document
whereas our task is a substantially easier one, only requiring a “yes, no, or maybe”
answer. Furthermore, result understanding is only one step in the pipeline described
in our work. Finally, unlike our approach, Bernstein et al. [2010b] was conceived as an
offline process requiring historical query log data.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:4 Y. Kim et al.

QueryQuery

Display
Results
Display
Results

① Query Understanding
Conventional: Query reformulation
Unconventional: Query attribute

annotation

① Query Understanding
Conventional: Query reformulation
Unconventional: Query attribute

annotation

③ Result Understanding
Conventional: Result list filtering

Unconventional: Result composition

③ Result Understanding
Conventional: Result list filtering

Unconventional: Result composition

② Retrieval② Retrieval

Fig. 1: Framework for including crowdsourced components into search pipeline.

In summary, the work presented in this paper builds on existing approaches that
incorporate crowdsourcing into the search process. While most prior work has used
crowd workers for evaluation, some recent work has looked to replace the algorithmic
components in search that are hard to automate [Parameswaran et al. 2013; Demar-
tini et al. 2013]. We study how the crowd can be used to improve search result ranking
on a larger dataset than has previously been explored, and this allows us to show
that while the crowd can significantly increase robustness, it provides little overall
benefit in terms of retrieval effectiveness. To make richer use of the crowd, we also
explore several crowd-based approaches that change the existing search experience.
While prior work in this space has focused on answering questions [Jeong et al. 2013]
or queries [Bernstein et al. 2010b], we look at helping the search engine issue struc-
tured queries and tabulate the results.

3. CROWDSOURCING IN SEARCH
We explore the use of crowdsourced components at several different stages in the
search process. A general framework for search can be seen in Figure 1. The three
major stages in the framework are query understanding, retrieval, and result under-
standing. The query understanding stage is responsible for analyzing the user’s ex-
pressed intent, such as via the query they enter into the search interface, to produce a
query representation that the retrieval module can use. The retrieval stage uses this
query representation to identify relevant documents. Then, in the result understand-
ing stage, the result list returned from the retrieval stage is prepared for presentation
to the user.

While traditionally the modules that compose each stage have been fully automated,
they could also be implemented using human computation. One possible way of incor-
porating human computation is to use crowdsourcing to seek incremental gains on
existing automated techniques in a traditional ranked list interface. In this approach,
the user experience is kept largely the same, while retrieval improvements are derived

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:5

from better result ranking that stems from the crowd’s ability to understand natural
language text more deeply than current machine algorithms.

Another approach is to attempt to find larger improvements by gathering deeper,
more structured data with human computation and using this information enable a
significant improvement to the user experience of search, in addition to improvements
to result ranking. While changing the user experience may be riskier, the combined
benefits may be greater as well.

While many instantiations of these two broad philosophies are possible, we experi-
ment with and compare one particular implementation for each of these approaches.
Our focus is on improving search quality, particularly in the case of difficult queries, for
which current search engines typically fail to deliver good results. The first approach
uses human computation to replace two very common methods of improving search
ranking quality: query expansion and result re-ranking. In the second approach, we
narrow our focus to long entity queries and use the crowd to enable a new search
experience based on tabulated results. The following subsections detail the specific
crowdsourcing techniques we explore for each stage of retrieval.

3.1. Query Understanding
The query understanding stage accommodates modules that change or annotate the
query to better understand the user’s intent. A classic example is query expansion,
where related terms are added to the query to retrieve documents that may use dif-
ferent terminology. Other query understanding methods include key concept identi-
fication in queries [Bendersky and Croft 2008] and query reduction [Kumaran and
Carvalho 2009]. Processes that annotate or classify queries also fit under the query un-
derstanding stage. Query classifiers may inform later retrieval processes so that spe-
cialized retrieval methods are used for different query classes [Kang and Kim 2003].
Query annotations may be used to enable searches in structured data such as tables
[Sarkas et al. 2010].

We implemented two different ways of using human computation for query under-
standing. The first uses a module called query reformulation that aims to improve
query expansion for ranking. Typically, queries are expanded using pseudo-relevance
feedback, which expands the query using terms that co-occur with the query in the top-
ranked documents from an initial retrieval ranking. This type of expansion involves
both risk and reward: for some queries, adding additional terms can lead to significant
improvements in retrieval effectiveness. In other cases, however, irrelevant terms can
sometimes be accidentally added to the query [Collins-Thompson 2009], which can
make results much worse. One method to automatically mitigate this risk and in-
creased variance is to ensure the expansion terms are related to more than one of the
terms in the original query [Collins-Thompson and Callan 2005], where relatedness
is typically estimated through co-occurrence analysis or distance in a word relation
graph. However, estimating the relatedness of terms can be a subtle semantic task
that may be even more effectively done by humans. In our query reformulation compo-
nent, we obtain judgments from crowd workers on whether candidate terms generated
by an automated process are related to existing query terms.

The second way we use human computation for the query understanding stage is via
a crowdsourcing approach that we call query attribute annotation. Descriptive entity
queries such as “Italian restaurant in Seattle open for dinner on Sunday” specify multi-
ple attributes such as location, cuisine type and hours and tend to perform very poorly
in existing search systems. The aim of this approach is to enable a larger improvement
in the user experience of search through attribute identification and query segmenta-
tion of entity queries, a task where current computational methods fall short. Given
the frequently ungrammatical structure of queries, where noun phrases are indiscrim-

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:6 Y. Kim et al.

inately strung together, it can be a difficult task for a search system to extract coherent
attributes from an entity query. The query attribute annotation component specifically
addresses this shortcoming by instead asking crowd workers to perform segmentation
during the query understanding stage. Furthermore, the component generates extra
on-the-fly attributes by asking crowd workers to identify aspects of the query that were
not adequately covered by a pre-compiled attribute list.

3.2. Retrieval
In the retrieval stage, the query representation from the query understanding stage is
processed by a retrieval engine to generate a list of candidate search results. The data
repository on which the search is conducted may be a traditional search index with
inverted lists, or a structured repository such as a database or a knowledge graph. This
stage of the search process is where machines excel over humans: machines are able
to sift through a large number of documents very quickly to pull out good candidates
for additional processing, whereas humans would take an unreasonably long time to
do the same task. Therefore, we rely on traditional algorithmic processes and do not
introduce any crowdsourced modules to handle the retrieval stage.

3.3. Result Understanding
The final stage of the search process is result understanding. In this stage, the results
produced from the retrieval stage are manipulated and processed to aid the user’s
understanding of the relevant content that has been identified. Examples of processes
that fit this stage include result re-ranking (e.g. using learning to rank algorithms),
snippet generation, and summarization. In addition, such modules may change how
results are organized and presented, as is done in result clustering [Carpineto et al.
2009].

Because result understanding prepares the results for human interpretation, it can
be valuable to add human computation into the loop to assist with assembling an effec-
tive presentation. One way of leveraging human computation is through a conservative
method aimed at improving ranking but that does not change the search experience:
result list filtering. This component simply filters out low-quality documents from a
ranked list with crowdsourced relevance judgments.

However, it is also possible to use crowdsourcing to enable new search experiences.
We explore a result composition component that synthesizes the results of entity
queries into a tabular form. It asks the crowd workers to identify whether a candi-
date search result matches any of the attributes requested by the user in the query.
With this information, the result composition module creates a table summarizing the
results and how well they match the various query attributes, with the goal of helping
users quickly identify good results.

4. CROWD-ENHANCED RANKING
Using these three stages as our guide, we begin by looking at conservative approaches
to incorporate crowdsourcing into each stage in a way that preserves the overall user
experience but improves the search result ranking. In this section we describe the
details of the ranking-centric components we implemented and introduce the dataset,
queries and metrics used to evaluate them. We then discuss the resulting successes
and failures of focusing on ranking, and show how this helps motivate our subsequent
exploration into larger changes that impact the existing search experience.

4.1. Query Understanding: Crowd Reformulation
In this query understanding stage, we attempt to improve algorithmic query expansion
using crowd workers. The initial query is first passed to an automated query expansion

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:7

process. In this study, we used the Indri search engine’s built-in pseudo-relevance feed-
back, which is based on Lavrenko’s relevance model [Lavrenko and Croft 2001]. Candi-
date expansion terms were generated through pseudo-relevance feedback by running
the queries against an English Wikipedia index and selecting the top 10 weighted
terms from the vocabulary of the top 50 documents. The terms in the expanded query
are then combined with those from the original query, and passed to the crowdsourced
query reformulation component for further processing by crowd workers.

The query reformulation component expects as input a query q, with individual
query terms denoted by qi, i.e., q = {qi : i ∈ {1, . . . , n}}) that has been expanded by
a list of candidate expansion terms c = {cj : j ∈ {1, . . . ,m}}. For each term qi in the
query, the component creates a crowd task asking the worker to identify up to three
candidate terms cj that are most related to qi, given the initial query q for context.
Each of these tasks is given to rn workers to complete.

With these task results, we can calculate the probability p(cj |q) for each candidate
term. By assuming that query terms are independent we have p(cj |q) =

∏
i p(cj |qi),

where p(cj |qi) = vj,i∑
j
vj,i

. Here, vj,i is the number of crowd workers who responded that

cj is related to qi. We then re-rank the candidate terms cj by p(cj |q) and reformulate
the query so that it is expanded by the top rk candidate terms. We do not modify the
weights of the expansion terms provided by Indri.

The number of workers, rn, and the number of top candidate terms used, rk, are
adjustable parameters. In our experiments, we used up to rn = 10 workers and varied
rk from 2 through 5 terms.

4.2. Result Understanding: Crowd Filtering
In the result understanding stage, the result list filtering component takes as input
a ranked list of documents. Then, for the top fk documents, it collects relevance judg-
ments from fn crowd workers for each item.

We aggregrate these judgments to obtain a relevance label for the (query, URL) pair
by using majority voting, a simple consensus method for label aggregation that is
widely-used in information retrieval [Kazai et al. 2011]. With the majority vote la-
bel, if a majority of workers indicate that the result is non-relevant, it is removed from
the ranked list. The end result is that relevant documents are moved up higher in
the list. While there exist a variety of more sophisticated aggregation methods (e.g.
using EM [Ipeirotis et al. 2010]), these approaches are most suited to typical crowd-
sourcing scenarios where raters may be biased or unreliable. In our study, we used
an internal corporate crowdsourcing service whose raters were experienced in rele-
vance assessment, reducing the need to deal with label noise. We forsee using more
advanced aggregation methods in future work when transitioning to use another, less
reliable crowd platform.

The number of workers, fn, and number of top-ranked documents used, fk, are pa-
rameters that can be adjusted. In our experiments, we used the top fk = 10 ranked
documents and varied fn from 1 through 5 to explore the effect of additional workers.

4.3. Experimental Setup
We evaluated how successfully the crowd could be used to improve search result rank-
ing by looking at two different query sets: the queries published for the TREC 2013
Web Track, and long, difficult queries extracted from the search log of a major search
engine. These query sets and evaluation measures are described below.

4.3.1. TREC Web Queries. The first query set used to evaluate the system was pub-
lished by the Text REtrieval Conference (TREC) for the Web Track in 2013, including

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:8 Y. Kim et al.

Table I: Statistics of the query sets.
of queries Avg terms in query

Difficult 100 6.28
TREC Web 50 3.34

relevance judgments made by trained assessors. We chose this query set for two main
reasons. First, we wanted a publicly available dataset to help ensure the reproducibil-
ity of our results. Second, the 2013 Web Track introduced a risk-sensitive task that
measured how well systems maximized gains while minimizing losses. We hypothe-
sized that the crowdsourced components may be a safe method of improving queries,
so we used the Web Track dataset to evaluate the system for robustness. The statistics
of the query set are presented in Table I.

The corpus for these queries is the ClueWeb12 crawl1. For the retrieval stage, the
TREC queries were submitted to the ClueWeb12 Batch Query Service maintained by
Carnegie Mellon University2, which is an online service providing access to an index
of the ClueWeb12 corpus built using the Indri search engine3. The index was stopped
using the default Indri stop list and stemmed using the Krovetz stemmer. 1000 results
were retrieved for each query for the initial result set and then spam-filtered post-
retrieval using the Waterloo spam scores [Cormack et al. 2011], similar to the baseline
run.

The baseline run was provided by the Web Track organizers and was generated using
Indri with pseudo-relevance feedback over a spam-filtered collection of ClueWeb12.

4.3.2. Difficult Web Queries. We obtained difficult queries from a collection of internally-
identified queries with low retrieval effectiveness, extracted from several months of
query log data from a commercial search engine. More specifically, query difficulty was
determined by computing the normalized discounted cumulative gain (NDCG), based
on editorial relevance judgments, of results for a set of ‘rare’ low-frequency queries
from the U.S. locale. To focus on deeper, more semantically-oriented types of difficulty,
we only considered low-effectiveness queries that did not have spelling errors, as de-
termined by the search engine’s automatic spell-checking and correction software: that
is, where low effectiveness was not simply the result of poor matching caused by a
mistyped or misspelled term. Each of these remaining queries was submitted to mul-
tiple commercial search engines, and NDCG@10 values computed for these ranked
results. A query was identified as difficult if the maximum NDCG@10 effectiveness
observed over all these search engines was less than a low threshold value.

Although for privacy reasons we cannot release the actual queries obtained from
commercial query logs, we can summarize some typical properties of difficult queries
in this set, as well as provide examples inspired by actual queries, that help explain
why search engines found them especially hard to satisfy. Summary statistics of the
query set are presented in Table I.

Question/answer queries. A core subset of difficult queries had the form of longer,
more natural language questions. For example, this included categories such as:
crossword puzzle clues, homework questions across a range of subjects, and users with
certain symptoms seeking medical opinions. Users would also ask ‘why’ questions with
no readily available factual answer. These queries were typically seeking information
that required deeper world knowledge, more sophisticated language understanding,

1http://lemurproject.org/clueweb12/
2http://boston.lti.cs.cmu.edu/Services/
3http://lemurproject.org/

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:9

and more advanced reasoning skills than currently available in commercial systems.
Malapropisms. Another category of difficulty involved malapropisms, which are cases
where users wrote a correctly-spelled, but semantically incorrect or anomalous usage
of a query term, e.g. one query asked about ‘delta muscles’ instead of ‘deltoid muscles’.
While commercial search systems have query alteration systems that are designed
to detect these cases and offer a corrected query suggestion, such algorithms don’t
always succeed, leading to problematic results.
Multi-attribute queries. A number of queries in the difficult set were seeking items
or resources that needed to satisfy multiple attributes, sometimes with complex
relationships, e.g. a particular form of hardware (‘cheap 3 inch wide pewter drawer
pull’) , or some service or information involving a specific combination of attributes
like department, location, demographic group, bureaucratic requirement, etc. (‘smith
county tax forms for minority-owned businesses’). Commercial search engines would
return results satisfying some, but not all, of the desired properties - or with incorrect
understanding of the relationships between the attributes. The restaurant queries we
study in Section 5 fall into this category.
Procedural tasks. A number of difficult queries were seeking step-by-step instructions
on how to do something common for a more unusual object or task (‘how to replace
battery in 1960s transistor radio’) , or how to do something unusual for a common
item (‘how to tarnish silverware’). In such cases, the majority intent for the common
item or task would sometimes dominate the unusual intent or item in the ranking
algorithm, leading to ineffective results.
Queries seeking very new information. In some cases, users were seeking new infor-
mation that was so recent that commercial engines had not yet been able to crawl and
index the relevant content, e.g. from a rapidly developing news story or lyrics to a
just-released song.

We used these difficult Web queries to evaluate the hypothesis that crowdsourcing
can improve search quality for unusually hard retrieval scenarios. We first created a
baseline retrieval run by submitting the raw queries to a major search engine, retriev-
ing the top 10 results as the initial candidate set.

To create relevance judgments for these results, we followed the TREC assessment
process as closely as possible, to create gold standard judgments comparable to those
published by TREC. We also wanted to avoid relying on crowdsourced relevance judg-
ments to evaluate a crowdsourcing system. Therefore, three contractors from an on-
line freelancer marketplace called oDesk4 were hired to provide relevance judgments
for the difficult queries. The contractors were hired from within the U.S. and were
selected through an interview process.

Individuals were provided with detailed instructions based on the training docu-
ments provided to TREC Web Track relevance assessors and were asked to judge
results for a sample query. Three contractors with high accuracy were hired. These
contractors judged a total of 3501 query-URL pairs, and 42 URLs from one query were
judged by all three contractors to calculate inter-annotator agreement. Note that the
interview and training process used in hiring the assessors clearly distinguishes this
source of relevance judgments from crowdsourcing, in which there are no guarantees
as to what kind or how many individuals will complete the given tasks, and is expected
to yield more reliable relevance judgments.

Although the contractors made graded TREC-style judgments, due to low annotator
agreement, their judgments were collapsed to binary (relevant vs. non-relevant) judg-
ments. The Cohen’s kappa scores for the collapsed judgments were 0.64, 0.37, and 0.42

4http://odesk.com

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:10 Y. Kim et al.

for the contractor pairs (1,2), (2,3), and (1,3) respectively. These somewhat low agree-
ment scores may have occurred for two reasons. First, because the queries were mined
from a query log, the contractors were not supplied with the topic descriptions that
traditionally accompany TREC queries to provide more detail about the user’s intent.
Second, these queries were unusually long and difficult, so that even human assessors
may have had trouble interpreting them and determining relevance.

4.3.3. Evaluation Methods. We evaluated effectiveness with the same evaluation mea-
sures used by the TREC Web Track: intent-aware expected reciprocal rank (ERR-
IA@5)[Chapelle et al. 2009] and intent-aware precision at 5 (P-IA@5). The intent-aware
versions of metrics computes the metric for each possible intent of the query separately,
then computes an average across the intents of the query. For example, the P-IA@k
can be calculated as follows. Assuming M queries, let Nt, 1 ≤ t ≤ M be the number of
intents associated with query t. jt(i, j) = 1 if the document for query t at rank j is rel-
evant to the intent i of query t. Otherwise jt(i, j) = 0. Then, the intent-aware precision
at k is:

P-IA@k =
1

M

M∑
t=1

1

Nt

Nt∑
i=1

1

k

k∑
j=1

jt(i, j)

For the difficult web query set, there is only one “default aspect” and the metrics
thus reduce to regular ERR@5 and P@5. We also computed risk-sensitive versions of
the metrics, introduced in the TREC 2013 Web Track5.

The risk-sensitive version of metric R for a run containing a set Q of n queries is
defined as follows. Let Q+ be the set of queries in Q where the method improves upon
the baseline and Q− be the set of queries in Q where the method does worse than the
baseline. We define δ(q) = R(qrun) − R(qbaseline) to be the difference between baseline
and run effectiveness, giving the risk-sensitive measure R as

Rrisk(Q) =
1

n

 ∑
q∈Q+

δ(q) + (α+ 1)
∑

q∈Q−

δ(q)

where α is a risk-aversion parameter. Maximizing Rrisk when α = 0 corresponds to
maximizing average effectiveness without a risk component, while if α >> 0, then
query results in which run effectiveness is worse than the baseline effectiveness are
penalized more heavily.

To guard the privacy of users who issued queries in the difficult query set, our ex-
periments used an internal crowdsourcing platform that was not publicly accessible.
Thus, the cost and speed of our experiments were not representative of typical crowd-
sourcing environments, and we defer the discussion of effective cost and time trade-offs
to a future study. Instead, our evaluation focuses on the effectiveness and user experi-
ence of our system. (A thorough discussion on costs and its relation to task completion
speed for crowdsourcing tasks can be found in Mason and Watts [2009].)

4.4. Experimental Results: Crowd-Enhanced Ranking
The results using our crowd-based retrieval approach are given below. We show that
while the gains in average effectiveness from using crowdsourcing to improve ranking
were limited, the results also supported our hypothesis that crowdsourcing can re-
duce the variance in effectiveness that results from using risky operations like query
expansion, increasing the reliability of the search system.

5http://research.microsoft.com/trec-web-2013

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:11

0

0.02

0

0.29

0.3

0.31

0.32

0.33

0.34

0 1 2 3 4 5 6 7 8 9 10

P
@

1
0

Number of Workers

 Filter workers

 Reformulation workers

(a) Effect of increasing worker per task. X-axis indicates the number
of workers used for the task. Y-axis indicates the P@10 of the
resulting ranked list.

0

5

10

0

5

10

15

20

25

30

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
u

m
b

er
 o

f
Q

u
er

ie
s

P@10 Gain/Loss

r_n = 0

r_n = 1

r_n = 5

r_n = 10

(b) Robustness of reformulation results. X-axis indicates the change
in P@10 for the queries generated by the reformulation. Y-axis
indicates the number of queries which had the specified amount of
change.

Fig. 2: Increasing workers per task (top) consistently increased P@10 for the filtering
task. While there was little effect on average P@10 for the query reformulation task,
the robustness of query expansion improved as workers per task (rn) increased (bot-
tom). Results shown for TREC 2013 dataset.

4.4.1. Web Track Queries. Table II shows the retrieval effectiveness and robustness
measures computed for the 2013 TREC Web Track query runs using various parameter

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:12 Y. Kim et al.

Table II: Effectiveness of Web Track runs for various parameter settings. “Indri” is the
initial pseudo-relevance feedback run with no crowdsourcing. † indicates a statistically
significant difference between a run and the baseline using the two-tailed paired t-test
at the p < 0.05 level. * indicates significance at p < 0.1.

run ERR-IA@5 ERR-IA@5 P-IA@5
α = 0 α = 10 α = 0

baseline 0.315 0 0.262
rk = 2 fn = 5 0.384† -0.198 0.342†
rk = 5 Indri 0.330 -0.265 0.290

rn = 1 0.327 -0.289 0.288
rn = 5 0.326 -0.287 0.291
rn = 10 0.326 -0.287 0.291
fn = 1 0.372 -0.410 0.323*
fn = 5 0.388† -0.216 0.336†

settings. Recall that rk is the number of expansion terms added in the query reformu-
lation module, rn is the number of crowd workers per task (these runs do not include
result filtering), and fn is the number of crowd workers that judged each query-result
pair. When applying the expansion terms with Indri queries, we explored query inter-
polation weights for the initial query in the range 0.80 to 0.98. The best results were
consistently obtained with interpolation of 0.98 so we used this setting. Varying the
number of expansion terms gave mixed results: using rk = 2 had slightly better P-
IA@5, but rk = 5 terms gave better ERR-IA@5, which was the primary metric used in
the TREC Web Track, and so we focus on those results here.

To evaluate the crowdsourced runs for robustness, the new risk-sensitive version of
ERR-IA for TREC 2013 was used, which is computed with respect to a given baseline
system (in our study, the baseline Indri results). For a given query, a system is penal-
ized if its effectiveness is lower than that of the baseline system on the same query.
The magnitude of this penalty is controlled by setting the α parameter: higher values
for α give higher penalties when a system has lower effectiveness (ERR-IA) than the
baseline effectiveness. For this study, we chose the conservative, risk-averse setting of
α = 10 (the ERR-IA@5 α = 10 column of Table II). (Although only results for α = 10
are reported, the trends for α = 1, 5 were similar.)

While increasing the number of workers rn per task gave limited gains in effec-
tiveness (Figure 2a), it did increase robustness, visualized by the reduced left-side
tail of the gain/loss histogram (Figure 2b). The risk-sensitive metric ERR-IA@5 with
α = 10 in Table II increased significantly from fn = 1 to fn = 5: much more than
the risk-agnostic ERR-IA@5. Another interpretation of this result is that increasing
the number of workers from 0 to 10 reduced the probability of query expansion failure
(performing worse than the baseline) from 14% to 10%.

Figure 2 shows that filtering improved precision roughly in proportion to the number
of filter workers: the ability of filtering to mitigate large expansion failures contributed
greatly to the overall robustness of the search process.

4.4.2. Difficult Web Queries. The results obtained using query reformulation and result
filtering for the difficult Web queries are summarized in Table III. For comparison, the
TREC Web baseline is shown. We also report four combined runs that used either 2 or
5 terms to reformulate the query, followed by either no filtering component, or filtering
using fn = 5 workers.

Overall, using crowdsourcing did not improve the baseline: it significantly hurt P@5
and reduced average ERR@5. This drop appears due almost entirely to the query refor-
mulation component, which (similar to the Web Track queries) reduced effectiveness

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:13

Table III: Effectiveness of difficult Web query runs, for different combinations of rk
expansion terms and filtered vs unfiltered results. † indicates a statistically significant
difference from the baseline using the paired two-tailed t-test with p < 0.05.

run ERR@5 P@5
baseline 0.4650 0.3840
rk = 2, unfiltered 0.4298 0.3220†
rk = 2, filtered 0.4437 0.3380†
rk = 5, unfiltered 0.4040 0.3040†
rk = 5, filtered 0.4123 0.3120†

substantially. The filtering component mitigated this somewhat, but not enough to
overcome the losses sustained in query reformulation.

Looking more closely at the poor query reformulation results, one problem was that
the difficult queries were hard for even humans to understand. Many of the difficult
queries were long and their intents unclear. The crowd workers may have thus been
unable to accurately judge the relatedness of a candidate expansion term to the query
terms. The difference between the performance of the query reformulation module
for the TREC queries and the difficult queries supports this view: the crowd work-
ers module was much more effective in the TREC queries which were much easier to
comprehend.

Another reason for poor reformulation performance may have been the inability of
the search engine query language to make use of the term weights provided by the
expansion algorithm and the workers. Without weights, the impact of adding the ex-
pansion terms on the overall query was often negative because it is difficult to control
the impact the expansion terms has on the overall query. In the case of shorter queries,
the expansion terms may overwhelm the original query terms, causing topic drift from
the original intent. We believe the optimal weight for expansion terms is fairly small
as was seen in Section 4.4.1 and the fact that the run with rk = 2 performed better
supports this view.

4.5. Summary
In this section we explored the use of crowdsourcing to improve the existing search
experience by augmenting traditional search components with crowd intelligence. We
saw that crowd-based result ranking increased the accuracy of the final ranked list.
While the crowd-augmented query expansion component did not produce significant
effective gains, it delivered robust results in the TREC dataset, reducing the number
of queries that were harmed by query expansion while maintaining overall accuracy.

This result suggests that crowdsourcing may be useful in sanity-checking intelligent
system scenarios such as automated healthcare, where failure incurs a high cost. In
addition, the data generated from systems with crowd components could be captured
and used as high-quality training data to learn to automate the work that the crowd
does. In this way, the crowd can enable search systems to provide robust intelligent
functionality prior to having sufficient training data, and then transition to a con-
sistent, reliable automated system. However, due to the monetary and time costs of
incorporating crowdsourcing, our results suggest that using crowdsourcing to improve
ranking in real-time may not be worthwhile in a live search system.

Furthermore, for more difficult queries, crowdsourcing failed to create retrieval ef-
fectiveness improvements and in particular, the query expansion model negatively im-
pacted the accuracy. For many of these queries, even humans had trouble judging re-
lated terms, which limited the potential improvements that could be expected from
crowdsourcing. In order to produce a more immediate impact on the user’s search ex-

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:14 Y. Kim et al.

Table IV: Survey results for why shorter queries are used instead of more descriptive
queries. Participants were allowed to select multiple answers.

Reason %
I expect the first query to get better results 38
It takes too long to type out the second query 34
It is too hard to think of what the right attributes are 13
I don’t know what attributes I want until after I search 20
The first query just happened to come to mind first 32

perience, we must go beyond simple replacements of automated processes and explore
methods to incorporating the crowd in the search process that significantly enhance
the user’s search experience.

5. CROWD-ENHANCED USER EXPERIENCE
We now examine the use of crowdsourcing in ways that improve and change the search
experience. Because people are good at understanding complex information needs and
synthesizing unstructured information, we focus in this section on a type of query
that often requires this type of processing: complex entity queries. Users often express
such queries in simplified form: for example, a user might search for “drawer pulls”
when they really want drawer pulls that have 4” center-to-center spacing in a pewter
or nickel finish. Long, attribute-rich queries like “drawer pulls with 4” center-to-center
spacing in a pewter or nickel finish” are not well-served by current Web search en-
gines, which typically use more surface-level term-matching strategies, as opposed to
the deeper forms of language processing needed to identify and enforce complex con-
straints.

To understand the nature of authentic attribute-based entity searches, we conducted
a survey of 100 interns from a large technology company. Interns were recruited
through circulating an email on the general mailing list and are expected to be well-
versed in the use of search engines. In addition, much of this population had recently
moved to a new area, which encouraged the types of queries we wanted to investigate.

Participants were asked to recall a recent instance when they wanted to find a spe-
cific entity from among a set of candidates, using their search history as necessary.
They were then asked to report two versions of a query: one which they would type
into a search engine (e.g., “hotels in las vegas”) and another richer representation that
described important attribute requirements (e.g., “four star plus hotels in Las Vegas on
the strip which have special discounted rates”). They were also asked why they might
issue the shorter query rather than the longer query.

Participants searched for a wide variety of entities, including travel (e.g., a hotel),
online shopping (e.g., a space heater), physical stores (e.g., a tire replacement shop),
personal finance (e.g., a credit card), and technology (e.g., a media browser). Restau-
rants emerged as an especially popular topic, at 17% of searches. Generally, users
created much shorter queries (3.15 words on average) when asked for the query they
would issue to a search engine, as opposed to when they were prompted to give a more
descriptive query (7.69 words on average), in line with previous research [Jansen et al.
2000].

When respondents were asked why they preferred to enter the shorter query, 38%
replied that they expected the shorter query to find better results than the more de-
scriptive query, as shown in Table IV. Previous work confirms that search engines tend
to perform better on short queries [Bendersky and Croft 2009], but the shorter queries
respondents used were often too ambiguous to identify good matches. For example,
although one respondent entered “Mt. Baker rental” when searching for a vacation

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:15

rental, few of the results met the requirements that the rental not allow pets and be
close to skiing, and those that did were impossible to identify from the search result
page. The short queries respondents entered were underspecified, but the long queries
were too complicated for the search engine to algorithmically understand.

To help search engines do a better job with attribute-based entity searches, rather
than mimicking existing search engine functionality, we chose to employ crowd work-
ers in a way that fundamentally changes the underlying search experience. In the
following sections we detail the components we studied and describe the experimental
setup. We then delve into a discussion of the experimental results, analyzing the im-
pact of experimental variables and characteristics of queries on search effectiveness.
The impact on user experience is explored separately through a user survey.

(a) Attribute identification task

(b) Attribute extraction task (c) Attribute match task

Fig. 3: Interface design of the crowd tasks.

5.1. Query Understanding: Identifying and Matching Query Attributes
The query understanding component seeks to correctly segment, understand, and use
the components of the query, in three processing stages. In the first stage, crowd work-
ers perform attribute identification, identifying which attributes are present in the
user’s query (Fig. 3a). For example, in the query “Italian restaurant in Seattle open for
dinner on Sunday”, the workers would identify the attributes: type of cuisine (‘Ital-
ian’), location (‘Seattle’), and business hours (‘open for dinner on Sunday’). The crowd

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:16 Y. Kim et al.

workers can identify these attributes from a given domain-specific list, name the at-
tributes themselves, or do a combination of both, to ensure high-quality answers for
common attributes and to cover attributes not addressed by the list. Domain-specific
lists can be created from sources such as Yelp Features, which lists attributes such as
business hours and locations for restaurants. Note that to maintain the simplicity of
this task, workers are merely asked about the presence of attributes in the first stage:
they do not need to provide the mapping of each attribute to its corresponding query
terms.

Once the presence of attributes is identified, the second attribute extraction stage
(Fig. 3b) asks crowd workers to extract, for a given attribute, the specific term or terms
in the user’s original query that match the attribute. This is done for each of the at-
tributes identified by workers in the first stage above. In the previous example, “Ital-
ian” would be extracted for the type of cuisine attribute. The number of workers for
the attribute identification and attribute extraction tasks can vary: our experiments
used 10 workers for each task instance.

Finally, in the third candidate retrieval stage, a ‘relaxed’ form of the original query
is created that removes all but the most salient attributes for the particular domain,
and is then submitted to a search engine. The purpose of this stage is to identify a pool
of candidate results that is likely to contain relevant documents satisfying further con-
straints. This step is domain-specific: for example, in the restaurant domain, salient
attributes might be the restaurant’s location and type of cuisine, so that an original
query “Italian restaurant in Seattle open for dinner on Sunday” would be relaxed to
the query “Italian restaurants in Seattle”. The original query, the attribute annota-
tions, and the candidate result list retrieved by the relaxed query are then passed to
the result understanding component for further processing, described next.

5.2. Result Understanding: Creating Table-Based Summaries
One of the main advantages of the deeper understanding provided through crowd-
sourcing is the ability to use the detailed information to create new user experiences.

In the result understanding stage, relevant results from the candidate list are iden-
tified and summarized into a table-like view. Two example table views, for a restaurant
query and a shopping query, are shown in Figure 4 in Section 5.3.4.

To create these views, workers perform an attribute match task (Fig. 3c) in which a
candidate document is checked to see if it satisfies a particular query attribute. This
is done for all combinations of candidate documents and query attributes. While it is
hard to do this algorithmically for an arbitrary attribute (such as “has valet parking”
or “serves kale”), it is something people can do easily. The workers’ results are aggre-
gated, producing a table view in which each row lists a result, and the columns indicate
whether the attribute requirements are satisfied. If there is disagreement amongst
workers about the attribute, the attribute is marked as “unsure”. Results with more
matching attributes are ranked higher, and ties are broken so results with more posi-
tive votes overall from the workers are ranked higher. The number of workers per task
is a parameter: we explore varying this number in our experiments between 1 and 5
workers per result-attribute pair.

As Figure 4 suggests, our approach can generalize to a wide variety of entity search
tasks with some additional effort. One stage, the query relaxation step for candidate
retrieval, has a domain-dependent implementation. However, it does not require a
domain-dependent corpus to be created, which would be prohibitively time-consuming
and expensive. Instead, given an index that returns entities, such as Freebase, our
crowd-driven attribute-based search process could be used to improve search for enti-
ties in any domain. We leave the application and evaluation of this approach in differ-
ent domains to future work.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:17

Table V: Statistics of the restaurant query set.
of queries Avg terms in query Shortest Longest

70 9.57 2 terms 29 terms

5.3. Experimental Results: Crowd-Enhanced User Experience
In this section, we describe the queries and dataset used and present the results of our
experimentation. We evaluate the crowd-enhanced search experience in two stages.
First, in Sec. 5.3.3 we examine retrieval effectiveness on a set of authentic restaurant
queries, using traditional information retrieval metrics. We also examine how effec-
tiveness varies with the number of crowd workers and across subgroups of queries
with different location attributes. Second, in Sec. 5.3.4 we describe a user study that
evaluates the effect of these components on the user experience. These two elements
are studied separately so that preferences for the user experience are not biased by
the effectiveness of results. As explained in Section 4.3, an exploration of time and
monetary trade-offs is omitted here and is a topic for future work.

5.3.1. Queries. Although users sometimes write long queries, most people intention-
ally keep their queries short, even for complex needs, as our survey in Sec. 5 showed.
For this reason, we evaluated our system using search queries collected outside of a
traditional search framework. Interns at a large technology company were recruited
to participate in an online survey where they were asked to create a query which
described a type of restaurant they would like to visit, using natural language and
multiple attributes (such as location, business hours and type of cuisine). The queries
gathered from this survey were manually filtered to remove spam and errors, resulting
in 70 queries. These queries had a wide range of query lengths (Table V). Examples
of queries gathered include “thai, greek, late night, near work” and “moderately priced
sushi restaurant open later than average”. The full list of queries may be found online6.

5.3.2. Dataset. To evaluate search effectiveness for our restaurant queries, we used
Yelp7 as the source for our candidate documents. We selected Yelp for its focused cover-
age of restaurant entities, but as mentioned previously, our approach does not actually
require a domain-specific corpus.

In the attribute identification task (Fig. 3a), workers were provided with a default at-
tribute list constructed based on Yelp Features. Workers could also add new attributes
that they felt were not covered by the default attribute list. For the attribute extraction
task, workers identified the query terms corresponding to the attributes for location
and type of cuisine (Figure 3b). For more robust results, our experiments used 10 work-
ers per each task instance.

The candidate retrieval stage used these terms to construct the relaxed query, which
was submitted to the Yelp API to obtain the top 10 results as the set of candidates. The
cuisine term in the relaxed query defaulted to “restaurant” if no cuisine type was iden-
tified, and the location term defaulted to the address of the technology company when
no absolute location was specified, or if a relative location (such as “near me”) was
specified. Note that the crowd workers merely extracted the parts of the query which
referred to a location: they did not attempt to determine the real, physical location
associated with the text. The physical location was determined through the default
location or through the Yelp API’s internal location matching mechanism. Finally, as

6www.cs.cmu.edu/∼yubink/restaurant queries.txt
7www.yelp.com

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:18 Y. Kim et al.

Table VI: Overview of results for entity attribute queries. The initial run is results re-
trieved from Yelp without any re-ranking based on attribute matches. The final run is
re-ranked based on the votes of up to 5 crowd workers per result. † indicates statistical
significance against the baseline using the paired two tailed t-test with p < 0.1.

run ERR@5 P@5 MAP
baseline 0.4108 0.3257 0.2877
initial 0.4478 0.3829 0.3369

1 worker 0.4148 0.3618 0.3267
2 workers 0.4473 0.3765 0.3407
3 workers 0.4743 0.4235 0.3448
4 workers 0.4649 0.4206 0.3465

final 0.4685 0.4206† 0.3468

Table VII: Accuracy of baseline and final crowdsourced results for three types of
queries. † indicates statistical significance (p < 0.005) using the paired two-tailed t-
test. * indicates statistical significance with p < 0.1.

Query type # Run ERR@5 P@5 MAP

specific location 36 baseline 0.4838 0.3611 0.3396
final 0.4530 0.4000 0.3480

relative location 15 baseline 0.0000 0.0000 0.0067
final 0.4008† 0.4133† 0.4184†

no location 19 baseline 0.5968 0.5158 0.4113*
final 0.5019 0.4211 0.2516

Table VIII: The effect of crowd-added attributes on accuracy of the re-ranking process.
Evaluation metrics were calculated only over the 22 queries where crowd attributes
were added.

run ERR@5 P@5 MAP
without crowd-added attributes 0.3867 0.3000 0.2568

with crowd-added attributes 0.4145 0.3182 0.2484

described in Section 5.2, a crowd task was created to identify attribute matches be-
tween the query and a candidate result (Figure 3c).

For comparison, we defined a baseline retrieval method that submitted the user’s un-
processed query to a major search engine, limiting the results to Yelp business pages.
(This use of an external search engine was necessary because the character limit on
queries with Yelp’s API was shorter than many of our queries.) Despite the natural lan-
guage descriptions in many queries, this baseline often found relevant matches within
the descriptions of user reviews associated with the business page and returned sur-
prisingly accurate results.

5.3.3. Analysis of Effectiveness. To evaluate the effectiveness of the results, we use stan-
dard retrieval metrics such as expected reciprocal rank (ERR), Precision, and mean
average precision (MAP). Binary (relevant or non-relevant) ground truth relevance
judgments were assigned to all results by one of the authors. As a reliability check,
a second author independently judged a sample of approximately 10% of the query-
URL pairs: the resulting Cohen’s kappa score was 0.77, which indicated substantial
agreement between the raters.

Table VI compares the effectiveness of the attribute-based crowdsourced approach
with the baseline automated approach in terms of P@5, ERR@5, and MAP. (Recall that

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:19

the baseline method returns Yelp business pages returned by a commercial search en-
gine in response to the user’s original query.) The crowdsourced method outperformed
the baseline method on average across all measures: ERR@5 increased by 14%, P@5 by
29% and MAP by 21%. The difference in P@5 was statistically significant at the 10%
level using a two-tailed paired t-test. Differences in ERR@5 and MAP were not statis-
tically significant with this query sample, which exhibited high variance in baseline
effectiveness: some queries had many relevant matches, while others had none.

Impact of Additional Workers. Table VI also shows the increase in effectiveness that
results from increasing the number of workers used to match a candidate result to
query attributes. The ‘initial’ run denotes the set of search results retrieved from
Yelp using the reduced query containing only the cuisine type and location. Subse-
quent rows show the result of applying crowd-based re-ranking based on the attribute
matches produced by n workers per result. In general, evaluation measures show im-
proved effectiveness as more workers are added, in accord with the trends seen with
result filtering workers in Section 4.4. The ‘final’ run, using five worker labels per re-
sult, is significantly higher in effectiveness than the initial retrieval. The drop in accu-
racy with one worker could be considered an artifact of chance variations in individual
worker quality for this particular task and query set.

Impact of Location. During analysis, we noticed a distinct trend in our results when
the queries were separated based on the characteristics of the location attribute. We
looked at queries with location specified three different ways: (1) with specific locations
(e.g., “redmond”, “98074”), (2) with relative locations (e.g. “nearby”, “10 mins walk”),
and (3) with no specified location. Table VII compares the baseline method and the
crowdsourced method for each of the three types.

The baseline performance was better for queries with no locations. This is due to
the limitations of the Yelp API used for the crowdsourced run: the API requires that
a location is always specified in the search, thus limiting the pool of restaurants. The
baseline method had no such constraints and was able to search restaurants from all
over the country, drawing from a much larger pool of candidates. For example, for
the query “sandwich place that has a caprese sandwich”, the Yelp API returned zero
possible matches, while the baseline identified a number of potential candidates.

For queries which include a specific location, the differences in retrieval effectiveness
were not statistically significant. The baseline queries found matches for its attributes
against the text of the user-written reviews and often produced good results.

However, in queries with relative locations, the crowdsourced method performed far
better than the baseline (0.4 vs. 0 in ERR@5). This is due to the fact that through
the crowdsourced annotations, the system is able to leverage the knowledge that these
queries mention a location attribute, but no specific location. Based on this, the system
can limit the results of the query to the geographic location of the query issuer. This
analysis suggests that one of the big strengths of crowdsourced attribute analysis is
the ability to accurately identify when default values should be applied.

Impact of Crowdsourced Attributes. During the query attribute annotation step (Sec-
tion 5.1), new attributes were created by the crowd when the pre-defined list of at-
tributes did not include attributes mentioned in the user’s query. New crowd-created
attributes added to the query set included “nut allergy-safe”, “has chicken fettuccini
alfredo”, and “has great service”. There were a total of 22 queries where these extra
attributes were added.

Table VIII summarizes the effect that the extra attributes had on the retrieval effec-
tiveness of the re-ranked results for this query segment. There were slight improve-
ments on ERR@5 and P@5, but these were not statistically significant. However, the

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:20 Y. Kim et al.

(a) Example restaurant query

(b) Example product query

Fig. 4: Table-like view of results generated by the crowd.

extra attributes turned out to improve the user experience in other ways, as described
in Sec. 5.3.4. Interestingly, the effectiveness measures are lower than average for these
queries (compare Table VIII with Table VI). Many long and difficult queries in the
query set were assigned extra attribute annotations: their average query length was
11.6 terms compared to the 9.6 terms in the overall query set. Seen in context with the
above results, it suggests that longer, more difficult queries could benefit from crowd-
sourced processing, perhaps more so than easier queries.

5.3.4. Analysis of User Experience. To evaluate how people responded to a tabulated in-
terface, we ran a user study comparing a traditional list of results with a tabular,
attribute-annotated version of the same set of results. Users were shown the output
of the crowdsourced search for two different randomly selected queries. For the first
query, results were presented using a traditional list-like result page (Figure 5). For
the second query, results were displayed in a tabular format (Figure 4a). These result
pages were presented in sequence: from a start page, the user would first click to view
one result page, return to the start page, then click to view the second result page. To
control for potential learning or primacy effects, half of the participants were shown
the list-like result page first, and the other half were shown the table-like result page
first.

The list and tabular versions of results for any given query used the same underlying
set of result entities (e.g. restaurants), so that only the presentation method was being
modified, not the set of result entities. In addition, the list interface mimicked the
result list from the major search engine used to collect the results. This means that

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:21

Fig. 5: List-like view of results shown to user study participants.

Table IX: Summary of study participants’ preferences for the two presented interfaces.

Preference # of people
List: Strong Preference 2
List: Weak Preference 1

Neutral 2
Table: Weak Preference 3
Table: Strong Preference 8

the list contained information not included in the tabular format, including a textual
snippet and the Yelp star rating for the restaurant.

For each query, the participants were asked to browse the results and find a restau-
rant that was a good match for the given query. Afterwards, a survey asked for their
preferences and reasons, and prompted participants to suggest additional useful at-
tributes. The participants in the study were sixteen university students: 13 male, and
3 female, ranging in age from from 23 to 40 years old.

The results of the user study are summarized in Table IX. Most participants pre-
ferred the rich search result understanding interface provided by crowd workers over
the traditional list interface. Eleven participants (69%) said they “strongly” or “weakly”
preferred the table, while only three (19%) said the same for the list. When asked to
elaborate why they preferred the table interface, respondents reported that the sum-
mary view was useful because they could eliminate certain restaurants without having
to click through to the result page. (The difference in actual times was not statistically
significant due to variance in queries.) On the other hand, people chose the list inter-
face because of familiarity (e.g. “Google-like”, “familiar scan pattern”).

Although the table view of the result list displayed the attributes requested in the
query, participants sometimes requested other attributes. The most common sugges-
tions were for the star ratings and reviews for the restaurants, mentioned by 37.5% of
participants. Interestingly, participants favored the table view over the list view even
though the list view displayed rating and review information. The participants’ feed-
back seem to suggest that in most restaurant queries, there is an implicit attribute of

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:22 Y. Kim et al.

“quality”. Such implicit attributes are obviously domain-dependent: exploring implicit
attributes of other domains would be a valuable extension to this work.

Impact of Crowdsourced Attributes. In a second small-scale study, we studied the ef-
fects of crowd-created attributes on user experience. The 22 queries which had crowd-
created attributes were given to a group of 7 university-aged users. After interacting
with the table to find a restaurant matching the query, the participants were asked to
identify the single most helpful attribute. We found that for 11 (50%) of the provided
queries, participants stated that one of the extra attributes was the most useful at-
tribute. Given that each query had an average of 3.43 attributes each, this indicates
that extra attributes were disproportionately useful to the users.

5.4. Summary
The crowdsourcing modules described in this section aimed to improve search by de-
viating from standard search components to deliver a novel user experience. The re-
sulting new system led to gains in both search effectiveness and user experience. We
found that the greatest improvements in effectiveness were in queries with relative
location: unlike the automated baseline system, the crowdsourced system was able
to correctly identify these queries and assign the right default values to the location
attribute. We also saw that most users preferred the table-like summary generated
by the crowdsourcing modules over a list view, and identified useful domain-specific
implicit attributes. Finally, although crowd-generated attributes did not materially
contribute to gains in search effectiveness, users considered them very helpful in their
task.

Typically, systems incorporating crowdsourcing are not able to scale to a free-to-use,
live search system, as the cost would be prohibitive. However, there are other areas in
which a crowd-based system may be successful. One example is a pay-for-search model
such as Jisiklog [Lee et al. 2013]. Also, this system could be implemented in a “friend-
sourcing” environment where questions are asked of friends with social reciprocity as
payment [Jeong et al. 2013]. Additionally, some of the crowdsourced processes explored
in this paper could also be used to selfsource the search experience by helping users
themselves structure their search processes [Teevan et al. 2014].

Furthermore, this work is a demonstration of the value of crowdsourcing in rapidly
prototyping and evaluating new search interfaces and experiences. Implementing a
similar system using automatic components would have been difficult, as it would
require highly accurate analysis of complex or loosely structured natural language
queries and, more importantly, a clean, structured entity database with many defined
fields. Crowdsourcing essentially created this database on-the-fly, with the ability to
add new fields as requested by the user. This in turn allowed us to evaluate a new
search interface without expensive data collection. In addition, the data generated
from the crowdsourcing experiments may be used to train an automatic system that
would run at scale, which is an interesting direction for future work.

6. CONCLUSIONS
In this paper, we explored the use of crowdsourcing to incorporate human computation
into the Web search pipeline in order to overcome existing limitations of automated
components and make Web search more intelligent. We used a framework that breaks
the search process down into distinct stages that can be supported with either algo-
rithmic or crowdsourced components. We studied instantiations of this framework that
used crowdsourced components for query and result understanding to improve search
result ranking, and to change existing search experiences.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:23

We found that crowdsourcing could improve search result ranking, and that crowd-
augmented query reformulation and result list filtering resulted in a more reliable
search experience than automated approaches. This is probably because humans are
less likely than algorithms to mistake irrelevant but correlated content as relevant
to a query. Our findings suggest that humans may make good replacements for auto-
mated processes in systems where errors are costly or where sufficient training data
does not yet exist. However, automated approaches to the information retrieval mod-
ules that we explored are already well understood, and the overall gains we observed
appear insufficient to justify the additional time and expense required to incorporate
the crowd.

In contrast to the ranking-centric approaches we explored, we found that using the
crowd to explore a significantly different and intelligent search experience yielded no-
ticeable benefit. We implemented crowd-based attribute annotation and table summa-
rization, and observed that these components lead to improvements in search effec-
tiveness and user experience. We identified queries where default values should be
applied, discovered important default attributes, and showed that crowd-generated
attributes were valued by users. Additionally, the table view generated by the result
composition module was preferred by most participants over the traditional search
result list view.

By incorporating the crowd into Web search, we were able to break away from fo-
cusing on limitations of algorithmic accuracy and concentrate directly on how a smart
search system with a significantly different approach might help users. There is an op-
portunity for designers of complex systems like Web search to use the crowd to quickly
build and prototype riskier, more creative solutions than they might otherwise, and
receive immediate feedback on its performance. The data collected from successful
experiments can then be used to guide the development of reliable automated compo-
nents.

Our results confirm that taking more time and including human computation in the
search process can lead to improvements in search effectiveness, robustness and user
experience. Looking ahead, our findings suggest that significant changes to existing
paradigms may be needed for crowdsourcing to fulfill its potential in search systems.

REFERENCES
Omar Alonso, Daniel E. Rose, and Benjamin Stewart. 2008. Crowdsourcing for Relevance Evaluation. In

Proc. SIGIR. 9–15.
Michael Bendersky and W. Bruce Croft. 2008. Discovering Key Concepts in Verbose Queries. In Proc. SIGIR.

491–498.
Michael Bendersky and W. Bruce Croft. 2009. Analysis of Long Queries in a Large Scale Search Log. In Proc.

WSCD. 8–14.
Michael S. Bernstein, Greg Little, Robert C. Miller, Björn Hartmann, Mark S. Ackerman, David R. Karger,

David Crowell, and Katrina Panovich. 2010a. Soylent: A Word Processor with a Crowd Inside. In Proc.
UIST. 313–322.

Michael S. Bernstein, Jaime Teevan, Susan Dumais, Dan Liebling, and Eric Horvitz. 2010b. Direct Answers
for Search Queries in the Long Tail. In Proc. CHI. 237–246.

Alessandro Bozzon, Marco Brambilla, and Stefano Ceri. 2012. Answering Search Queries with Crowd-
Searcher. In Proc. WWW. 1009–1018.

Claudio Carpineto, Stanislaw Osiński, Giovanni Romano, and Dawid Weiss. 2009. A Survey of Web Cluster-
ing Engines. ACM Comp. Surv. 41, 3 (2009), 17:1–17:38.

Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. 2009. Expected Reciprocal Rank for
Graded Relevance. In Proc. CIKM. 621–630.

Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson, and Eric Horvitz. 2013. Pairwise Ranking Aggregation
in a Crowdsourced Setting. In Proc. WSDM. 193–202.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

39:24 Y. Kim et al.

Kevyn Collins-Thompson. 2009. Reducing the Risk of Query Expansion via Robust Constrained Optimiza-
tion. In Proc. CIKM. 837–846.

Kevyn Collins-Thompson and Jamie Callan. 2005. Query Expansion using Random Walk Models. In Proc.
CIKM. 704–711.

Gordon V. Cormack, Mark D. Smucker, and Charles L.A. Clarke. 2011. Efficient and Effective Spam Filtering
and Re-ranking for Large Web Datasets. Information Retrieval 14, 5 (2011), 441–465.

Daniel Crabtree. 2007. Exploiting Underrepresented Query Aspects for Automatic Query Expansion Cate-
gories and Subject Descriptors. In Proc. KDD. 191–200.

Gianluca Demartini, Beth Trushkowsky, Tim Kraska, and Michael J Franklin. 2013. CrowdQ : Crowd-
sourced Query Understanding. In Proc. CIDR.

Susan T. Dumais. 2013. Task-Based Search: A Search Engine Perspective. Talk at NSF Task-Based Infor-
mation Search Systems Workshop. (March 14-15 2013). http://bit.ly/15rK5tD.

Michael J. Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold Xin. 2011. CrowdDB:
Answering Queries with Crowdsourcing. In Proc. SIGMOD. 61–72.

Michael J. Franklin, Beth Trushkowsky, Purnamrita Sarkar, and Tim Kraska. 2013. Crowdsourced Enu-
meration Queries. In Proc. ICDE. 673–684.

Brent Hecht, Jaime Teevan, Meredith Ringel Morris, and Daniel J. Liebling. 2012. SearchBuddies: Bringing
Search Engines into the Conversation. In Proc. ICWSM. 138–145.

Gary Hsieh and Scott Counts. 2009. Mimir: A Market-Based Real-Time Question and Answer Service. In
Proc. CHI. 769–778.

Panagiotis G. Ipeirotis, Foster Provost, and Jing Wang. 2010. Quality Management on Amazon Mechanical
Turk. In Proc. HCOMP. 64–67.

Bernard J. Jansen, Amanda Spink, and Tefko Saracevic. 2000. Real Life, Real Users, and Real Needs: A
Study and Analysis of User Queries on the Web. IP&M 36, 2 (2000), 207–227.

Jin-Woo Jeong, Meredith R. Morris, Jaime Teevan, and Daniel Liebling. 2013. A Crowd-Powered Socially
Embedded Search Engine. In Proc. ICWSM. 263–272.

In-Ho Kang and GilChang Kim. 2003. Query Type Classification for Web Document Retrieval. In Proc.
SIGIR. 64–71.

Gabriella Kazai, Jaap Kamps, Marijn Koolen, and Natasa Milic-Frayling. 2011. Crowdsourcing for Book
Search Evaluation: Impact of Hit Design on Comparative System Ranking. In Proc. SIGIR. 205–214.

Giridhar Kumaran and Vitor R. Carvalho. 2009. Reducing Long Queries Using Query Quality Predictors. In
Proc. SIGIR. 564–571.

Walter S. Lasecki and Jeffrey P. Bigham. 2014. Interactive Crowds: Real-Time Crowdsourcing and Crowd
Agents. In Handbook of Human Computation. 509–521.

Victor Lavrenko and W. Bruce Croft. 2001. Relevance Based Language Models. In Proc. SIGIR. 120–127.
Edith Law and Haoqi Zhang. 2011. Towards Large-Scale Collaborative Planning: Answering High-Level

Search Queries Using Human Computation. In Proc. AAAI. 1210–1215.
Uichin Lee, Jihyoung Kim, Eunhee Yi, Juyup Sung, and Mario Gerla. 2013. Analyzing Crowd Workers in

Mobile Pay-for-Answer Q&A. In Proc. CHI. 533–542.
Adam Marcus, Eugene Wu, Samuel Madden, and Robert C. Miller. 2011. Crowdsourced Databases: Query

Processing with People. In Proc. CIDR. 211–214.
Winter Mason and Duncan J. Watts. 2009. Financial Incentives and the “Performance of Crowds”. In Proc.

HCOMP. 77–85.
Aditya G. Parameswaran, Ming Han Teh, Hector Garcia-Molina, and Jennifer Widom. 2013. DataSift: An

Expressive and Accurate Crowd-Powered Search Toolkit. In Proc. HCOMP. 112–120.
Matthew Richardson and Ryen W. White. 2011. Supporting Synchronous Social Q&A Throughout the Ques-

tion Lifecycle. In Proc. WWW. 755–764.
Nikos Sarkas, Stelios Paparizos, and Panayiotis Tsaparas. 2010. Structured Annotations of Web Queries. In

Proc. SIGMOD. 771–782.
Eric Schurman and Jake Brutlag. 2009. Performance Related Changes and their User Impact. Velocity.

(2009). http://oreil.ly/fTmYwz.
Jaime Teevan, Kevyn Collins-Thompson, Ryen White, Susan Dumais, and Yubin Kim. 2013. Slow Search

or: How Search Engines Can Learn to Stop Hurrying and Take Their Time. In Proc. HCIR.
Jaime Teevan, Kevyn Collins-Thompson, Ryen W. White, and Susan Dumais. 2014. Slow Search. Commun.

ACM 57, 8 (2014), 36–38.
Jaime Teevan, Daniel J. Liebling, and Walter S. Lasecki. 2014. Selfsourcing Personal Tasks. In Proc. CHI

EA. 2527–2532.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

Using the Crowd to Improve Search 39:25

Tingxin Yan, Vikas Kumar, and Deepak Ganesan. 2010. CrowdSearch: Exploiting Crowds for Accurate Real-
time Image Search on Mobile Phones. In Proc. MobiSys. 77–90.

Haoqi Zhang, Edith Law, Rob Miller, Krzysztof Gajos, David Parkes, and Eric Horvitz. 2012. Human Com-
putation Tasks with Global Constraints. In Proc. CHI. 217–226.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 4, Article 39, Publication date: March 2010.

