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Overview

� What is DG? An Example

� Why DG for Computational Fluid Dynamics?

� Project X

� DG vs. Finite Volume
� DG for Elliptic Problems

� p-Multigrid for Higher-order DG Discretizations

� Grid Adaptation

� Conclusions and Ongoing Work
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Finite Element Example

� Examine 1-D convection equation with source term:

aux = cos(x) on [0, π]

� Homogenous Dirichlet BCs ⇒ Exact solution: u(x) = sin(x)
a

� Standard FEM procedure:
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� Approximate: u(x) =
∑

j Ujφj(x)

� φj are “hat” basis functions

� N + 1 basis functions in 1-D
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FEM Example (ctd.)

� Goal: solve for the coefficients Uj (discrete vector U)

� Weak form of equations:
∫

Ω
auxφidx =

∫

Ω
cos(x)φidx

−

∫

Ω
auφi,xdx +

[
(au)φi

]∂ΩR

∂ΩL

=

∫

Ω
cos(x)φidx

� Substitute u(x) =
∑

j Ujφj(x)

−
∑

j

Uj

∫

Ω
aφjφi,xdx + aUNφi(π) − aU0φi(0) =

∫

Ω
cos(x)φidx

Linear System: AU = F
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Solutions to Example

� For a = 1, ue = sin(x), we obtain:
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Where Discontinous Galerkin Differs

� Formulation is the same as standard FEM.
� DG difference is in the choice of basis.
� Specifically, no continuity constraint between elements.
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� φj associated with elements.

� 2N linear basis functions in 1-D.
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DG Weak Form

∫

Ω
auxφidx =

∫

Ω
cos(x)φidx

∑

κ

∫

κ
auxφidx =

∑

κ

∫

κ
cos(x)φidx

∑

κ

{
−

∫

κ
auφi,xdx +

[
(au)φi

]κ+1/2

κ−1/2

}
=

∑

κ

∫

κ
cos(x)φidx

−

∫

κ
auφi,xdx +

[
(au)φi

]κ+1/2

κ−1/2
=

∫

κ
cos(x)φidx
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What About Element Interfaces?

� Discontinuity creates problem in the weak form:

−

∫

κ
auφi,xdx +

[
(au)φi

]κ+1/2

κ−1/2
=

∫

κ
cos(x)φidx

� (au) is multi-valued at element interfaces.

κ

u

u
L

R

κ+1κ+1/2

� Fortunately, this problem has been
well studied by the Finite Volume
community.

� Solution: use numerical flux function

(au) → H(uL, uR, a).

� In this case use pure upwinding.
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DG Solution

� For the same 1-D problem, ue = sin(x), we obtain:
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Why DG?

� DG seems to add additional DOFs for no reason.
� Why do we want to use DG over standard FEM?

� Main Benefit:
Easy to Introduce Higher Order (p > 1) interpolation
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Lagrange Basis

Functions: p = 2

(p + 1) Basis Functions per element
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Other Benefits of DG

� Basic iterative solution schemes (e.g. block Jacobi) are stable for
higher order (i.e. no need for multistaging).

� Discretization lends itself to solution via p-multigrid.

� Easy parallelization.

� In the field of CFD for aerodynamics, these benefits seem to
outweigh the cost of extra DOFs.
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Project-X

� DG solver package for computational fluid dynamics.

� Started in the Fall of 2002.
� Involved in seven M.S. theses and six ongoing Ph.D. theses.

� Currently:
◮ Approximately 100,000 lines of code.
◮ Capability ranges from grid generation to visualization.
◮ Various side projects: grid adaptation, geometry optimization,

turbulence modeling, shock limiting, unsteady studies.
◮ End goal is full Reynolds-Averaged Navier-Stokes in 3-D.
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Project-X Goal

� Project X Team Goal:
◮ To improve the aerothermal design process for complex 3D

configurations by significantly reducing the time from geometry
to solution at engineering-required accuracy using high-order
adaptive methods

Who are we?

� Todd Oliver
� Chris Fidkowski
� Garrett Barter
� Bob Haimes
� Prof. David Darmofal
� Prof. Jaime Peraire

� Tan Bui
� Shannon Cheng

� James Lu
� Pete Whitney

� Doug Quattrochi
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Accuracy of Current CFD Methods

Results of an AIAA Drag Prediction Workshop comparing the
performance of industry-standard CFD codes:
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Motivation for higher order in CFD

� State of CFD in applied aerodynamics
◮ Finite-volume with at best second order accuracy
◮ Questions exist whether current discretizations are capable of

achieving desired accuracy levels in practical time

� Decrease computational time and gridding requirements by
increasing solution order

log T = wd
(
−

1

p
log E + log p

)
− log F + const

� T = time to solution
� p = discretization order

� E = desired error level (E << 1)

� w = solution complexity

� d = dimension of problem

� F = computational speed
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Euler Equations of Gas Dynamics

ut + ∇ · Fi(u) = 0

� u is the state vector and Fi is the inviscid flux.

� In two dimensions:

u =




ρ
ρu
ρv
ρE


 Fx

i =




ρu
ρu2 + p

ρuv
ρuH


 , Fy

i =




ρv
ρuv

ρv2 + p
ρvH


 .
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Integral Form

2

0
1

3

Integrate Euler equations over tri-
angle 0 and use Green’s theorem:

d

dt

∫

A0

u dx+

3∑

k=1

∫

0k
Fi(u)·n̂ ds = 0

If we assume u is constant in
each triangle . . .
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First-order Accurate Finite Volume

2

0
1

3

u constant in each triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(u0,uk, n̂0k) ds = 0

Hi(uL,uR, n̂LR) is flux function that
determines inviscid flux in n̂LR direction
from left and right states, uL and uR.

Example flux functions: Godunov, Roe,
Osher, Van Leer, Lax-Friedrichs, etc.

This discretization has a solution error
which is O(h) where h is mesh size.
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Second-order Accurate Finite Volume
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In each triangle, reconstruct a linear so-
lution, ũ, using neighboring averages:

ũ0 ≡ u0 + (x − x0) · ∇u0,

∇u0 ≡ ∇u0 (u0,u1,u2,u3) .

Apply conservation law on triangle:

du0

dt
A0 +

3∑

k=1

∫

0k
Hi(ũ0, ũk, n̂0k) ds = 0

On smooth meshes and flows, solution
error is O(h2).
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Pros/Cons of Higher-order Finite Volume
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+ Increased accuracy on given mesh
without additional degrees of free-
dom

− Difficulty in achieving higher-order
on unstructured meshes and near
boundaries

− Stabilizing multi-stage methods nec-
essary for local iterative schemes

− Matrix fill-in results in high-memory re-
quirements
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Instability of Local Iterative Methods

Consider steady state problem and define discrete residual for cell j,

Rj(u) ≡
3∑

k=1

∫

jk
Hi(ũj , ũk, n̂jk) ds = 0.

A Jacobi iterative method to solve this problem is,

u
n+1
j = u

n
j − ω (∂Rj/∂uj)

−1
Rj(u).

For any finite ω, Jacobi is unstable for higher-order. One solution is a
multi-stage method,

ûj = u
n
j − ω̂ (∂Rj/∂uj)

−1
Rj(u

n)

u
n+1
j = u

n
j − ω (∂Rj/∂uj)

−1
Rj(û)

⇐ Requires two residual
evaluations.

Computational Prototyping Group Seminar 21/53



AEROSPACE COMPUTATIONAL DESIGN LAB

Matrix Fill for Higher-order Finite Volume
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DG for the Euler Equations

� Start from strong form of governing equations:

ut + ∇ · Fi(u) = 0.

� Look for a solution uh ∈ Vp
h.

� Multiply governing equation by weight function vh ∈ Vp
h and

integrate over element κ ∈ Th:
∫

κ
v

T
h [(uh)t + ∇ · Fi] dx = 0.

� Integrate second term by parts (assume interior element):
∫

κ
v

T
h (uh)t dx −

∫

κ
∇v

T
h · Fi dx +

∫

∂κ
v

+
h

T
Hi(u

+
h ,u−

h , n̂)ds = 0.
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DG and Finite Volume

� DG weighted residual:
∫

κ
v

T
h (uh)t dx −

∫

κ
∇v

T
h · Fi dx +

∫

∂κ
v

+
h

T
Hi(u

+
h ,u−

h , n̂)ds = 0.

� For p = 0 solution, this reduces to:

(uκ)tAκ +

∫

∂κ
Hi(u

+
h ,u−

h , n̂)ds = 0.

� Thus, p = 0 DG is identical to first-order finite volume.
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DG discretization: Global view

� Find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

{∫

κ
v

T
h (uh)t dx −

∫

κ
∇v

T
h · Fi dx

}

+

∫

Γi

v
+
h

T
Hi(u

+
h ,u−

h , n̂) ds +

∫

∂Ω
v

+
h

T
Hb

i (u
+
h ,ub

h, n̂) ds = 0.

� Boundary conditions enforced weakly through Hb
i (u

+
h ,ub

h, n̂)

where u
b
h is determined from desired boundary conditions and

outgoing characteristics.

� For smooth problems, the error of this scheme is expected to be
O(hp+1).
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Pros/Cons of Higher-order DG

− Increased accuracy on given mesh requires additional degrees of
freedom

+ Higher-order accuracy not hampered on unstructured meshes nor
near boundaries

+ Local iterative methods are stable

+ Matrix fill-in maintains block sparsity of p = 0

∫

κ
v

T
h (uh)t dx −

∫

κ
∇v

T
h · Fi dx +

∫

∂κ
v

+
h

T
Hi(u

+
h ,u−

h , n̂)ds = 0.
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Stability of Local Iterative Methods for DG

An elemental block Jacobi iterative method to solve this problem is,

u
n+1
j = u

n
j − ω (∂Rj/∂uj)

−1
Rj(u).

where ∂Rj/∂uj is the diagonal block for the element j.

For 0 < ω < 1, elemental block Jacobi is stable independent of p.
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Matrix Fill for Higher-order DG

50 100 150 200 250 300 350 400 450 500 550
50

100

150

200

250

300

350

400

450

500

550

First-order (p = 0)

0 5 10 15 20 25 30 35 40 45

0

5

10

15

20

25

30

35

40

45

nz = 115

Second-order (p = 1)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

nz = 1035

Third-order (p = 2)

0 50 100 150 200 250

0

50

100

150

200

250

nz = 4140

Computational Prototyping Group Seminar 28/53



AEROSPACE COMPUTATIONAL DESIGN LAB

Inviscid Flow Example
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Navier-Stokes Equations

� Navier-Stokes Equations: ut + ∇ · Fi(u) −∇ · Fv(u,∇u) = 0

� Fv = Av∇u = (Fx
v ,Fy

v) is the viscous flux vector

F
x
v =




0
2
3µ(2∂u

∂x − ∂v
∂y )

µ(∂u
∂y + ∂v

∂x)
2
3µ(2∂u

∂x − ∂v
∂y )u + µ(∂u

∂y + ∂v
∂x)v + κ∂T

∂x


 ,

F
y
v =




0

µ(∂u
∂y + ∂v

∂x)
2
3µ(2∂v

∂y − ∂u
∂x)

2
3µ(2∂v

∂y − ∂u
∂x)v + µ(∂u

∂y + ∂v
∂x)u + κ∂T

∂y



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DG for Elliptic Operators: First Attempt

� Model problem for viscous terms of N-S: 1-D, scalar Poisson’s
equation

−uxx = f on [−1, 1]

� Proceed as for Euler:
◮ Triangulate domain into non-overlapping elements κ ∈ Th

◮ Define solution and test function space Vp
h

� Discrete formulation: Find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

{
−

[
vhûx

]xκ+1/2

xκ−1/2

+

∫

κ
(vh)x(uh)xdx

}
=

∑

κ∈Th

{∫

κ
vhfdx

}

� Need to define ûx
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DG for Elliptic Operators: First Attempt

� No upwinding mechanism ⇒ choose central flux

ûx =
1

2
((uh)L

x + (uh)R
x )

� Discrete formulation becomes: Find uh ∈ Vp
h such that ∀vh ∈ Vp

h,

∑

κ∈Th

{
−

[1

2
vh((uh)L

x + (uh)R
x )

]xκ+1/2

xκ−1/2

+

∫

κ
(vh)x(uh)xdx

}
=

∑

κ∈Th

{∫

κ
vhfdx

}

� PROBLEM: Scheme is inconsistent!
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Inconsistency

� Examine Laplace’s equation with homogeneous Dirichlet BCs

− uxx = 0 on [−1, 1]

u(−1) = u(1) = 0

� Exact solution: u(x) = 0

u h
R(u  )=0h

x

� If (uh)x = 0 everywhere, discrete equations satisfied exactly
regardless of magnitude of uh
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First Order System Approach

� Introduce new variable, q = ux, such that

− qx = f

q − ux = 0

� Discrete formulation: Find uh ∈ Vp
h and qh ∈ Vp

h such that ∀vh ∈ Vp
h

and ∀τh ∈ Vp
h,

∑

κ∈Th

{
−

[
vhq̂

]xκ+1/2

xκ−1/2

+

∫

κ
(vh)xqhdx

}
−

∑

κ∈Th

{∫

κ
vhfdx

}
= 0

∑

κ∈Th

{∫

κ
τhqhdx +

∫

κ
(τh)xuhdx −

[
τhû

]xκ+1/2

xκ−1/2

}
= 0

� Need to choose q̂ and û
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Bassi-Rebay Schemes

� Scheme 1: no upwinding mechanism ⇒ choose central fluxes

û =
1

2
(uL

h + uR
h ); q̂ =

1

2
(qL

h + qR
h )

◮ Sub-optimal order of accuracy for odd p

◮ Stencil no longer compact

� Scheme 2: With JsK = sL − sR and {s} = 0.5(sL + sR),

û = {uh}; q̂ = {(uh)x} − ηf{δf}

◮ New variable, δf (JuK), is a jump penalty term.

◮ Optimal accuracy and compact stencil.
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Iterative Solver

� Nonlinear discrete equations can be written

R(uh) = 0

� Use a preconditioned iterative scheme

u
n+1
h = u

n
h − P

−1
R(un

h)

� Preconditioner
◮ Block-element smoothing

� P = Mblock ⇒ Block diagonal of the Jacobian
◮ Line-element smoothing

� P = Mline ⇒ Block tridiagonal systems from Jacobian
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Line Solver

� Motivation: Transport of information in Navier-Stokes equations
characterized by convection-diffusion like phenomena
◮ Inviscid regions: characteristic directions set by convection
◮ Viscous regions: diffusion effects can be stronger

� Procedure:
◮ Construct lines of elements based on measure of influence
◮ Build and invert Mline, which is a set of block tridiagonal

systems from the full Jacobian
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Example Lines and Performance

Trailing edge of NACA 0012
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p-Multigrid Solver: Motivation

� Observation: Smoothers are inefficient at eliminating low
frequency error modes on fine level

� h-Multigrid
◮ Spatially coarse grid used to correct solution on fine grid
◮ Grid coarsening is complex on unstructured meshes

� p-Multigrid (Ronquist & Patera, Helenbrook et al., Fidkowski &
Darmofal)
◮ Low order (p − 1) approximation used to correct high order (p)

solution
◮ Natural implementation in DG discretization on unstructured

meshes
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p-Multigrid Solver: Full Multigrid

� Iterate on coarsest levels first and use these solutions as initial
guesses for fine level solutions.

� Line solver used as smoother
� Full Approximation Scheme (FAS) used to deal with non-linearity

p=0

p=1

p=2

p=3
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NACA 0012 Test Case

M = 0.5, Re = 5000, α = 0
Grids are from Swanson at NASA Langley

2112 element mesh Mach contours

Computational Prototyping Group Seminar 41/53



AEROSPACE COMPUTATIONAL DESIGN LAB

Drag Error Convergence
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CPU Timing
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h-Adaptation

� For smooth flows, large high-order elements are ideal for
accuracy and efficiency

� When singularities are present, h-adaptation is necessary to
maintain accuracy

� Where to adapt? One option is output-based adaptation (Venditti
& Darmofal)
◮ Pick output of interest (lift, drag) and a desired error tolerance
◮ Solve for output adjoint in addition to the flow solution
◮ Use adjoint and flow solutions to estimate which elements

contribute most/least to output error
◮ Refine/coarsen mesh until the output error tolerance is met
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h-Adaptation Example

NACA 0012 Transonic test case: M = 0.8, α = 1.25o
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NACA 0012: M = 0.8, α = 1.25
o

⇐ P1
49,836 DOF

|Cd −Cd,exact| =

4.0 ∗ 10−5

P2 ⇒
30,288 DOF

|Cd −Cd,exact| =

1.2 ∗ 10−5
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Ongoing Work

� Turbulence modeling (Todd Oliver)

� Shocks (Garrett Barter)

� Adaptation (Mike Park and Chris Fidkowski)

� Optimization (James Lu)

� Unsteady + Frequency Domain Solver (Tan Bui)

� Axisymmetric Solver + Plasma Physics (Shannon Cheng)

� Explicit solver (Pete Whitney)

� Hypersonic Flow (Doug Quattrochi)
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Questions?
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BR1 Scheme

� No upwinding mechanism ⇒ choose central fluxes

û =
1

2
(uL

h + uR
h ); q̂ =

1

2
(qL

h + qR
h )

� Sub-optimal order of accuracy for odd p

� Stencil no longer compact

Rk

q
k-1k

q
+1k

q

-1k
q

u k-2 -1ku u k

+1k
q

u k +1ku u k+2

q
k

-1ku u k +1ku
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BR1 Scheme

� Define jump, J·K, and average, {·}, operators:

JsK = sL − sR and {s} =
1

2
(sL + sR)

� Central fluxes become

û = {uh}; q̂ = {(uh)x} − {δ}

� δ given by following problem: Find δ ∈ Vp
h such that ∀τh ∈ Vp

h,

∑

κ∈Th

∫

κ
τhδdx =

∑

n

[
JuhK{τh}

]
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BR1 Scheme

� BR1 becomes: Find uh ∈ Vp
h and such that ∀vh ∈ Vp

h,

∑

κ∈Th

∫

κ
(vh)x(uh)xdx

−
∑

n

[
JuhK{(vh)x} + JvhK({(uh)x} − {δ})

]
=

∑

κ∈Th

∫

κ
vhfdx

� Stencil extended by δ de-
pendence on uh

-1ku u k +1ku
δk

u k-2 -1ku u k

δk-1

Rk

-1ku u kδk-1 δk δk+1+1ku

u k +1ku u k+2

δk+1
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BR2 Scheme

� Goal: Eliminate extended stencil
� Approach: Modify auxiliary variable, δ, previously defined by:

∑

κ∈Th

∫

κ
τhδdx =

∑

n

[
JuhK{τh}

]

� New variable, δf , given by: Find δf ∈ Vp
h such that ∀τh ∈ Vp

h,

∫

κL/R

τhδ
L/R
f dx =

[
JuhK{τh}

L/R
]

nf

� New fluxes have same form as before

û = {uh}; q̂ = {(uh)x} − ηf{δf}
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BR2 Scheme

� Replacing {δ} in BR1 by ηf{δf} gives BR2

� For proper choice of ηf , can prove optimal order of accuracy

� Stencil is compact

δk-1/2
+/-

-1ku u k

δk+1/2
+/-

u k +1ku

Rk

δk-1/2
+/--1ku

δk+1/2
+/- +1kuu k
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