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Overview U

What is DG? An Example
Why DG for Computational Fluid Dynamics?
Project X

DG vs. Finite Volume
DG for Elliptic Problems

p-Multigrid for Higher-order DG Discretizations
Grid Adaptation
Conclusions and Ongoing Work
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Finite Element Example |||||-

B Examine 1-D convection equation with source term:

au, = cos(x) on [0,7]

B Homogenous Dirichlet BCs = Exact solution: u(x) = Sma("”)
B Standard FEM procedure:

N elements
4{/ : \} m Approximate: u(z) =Y. U;¢;(x)
9 3 9, % 9 B ¢; are “hat” basis functions

. . | | . ®m N + 1 basis functions in 1-D
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FEM Example (ctd.) U

B Goal: solve for the coefficients U; (discrete vector U)
B Weak form of equations:

/aua;qbida; = /cas(x)qﬁidaﬁ

Q Q

—/ auQ; dx + [(au)gbz} o = /cos(x)gbida:
0 ’ 0Qr Q

B Substitute u(z) = ) _; U;¢;(x)

_ zj: Uj /Q ag;dizdx + aUngi(m) — alpi(0) = /Qcas(ac)@da;

Linear System: AU = F
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Solutions to Example |||||-

W Fora=1, u. = sin(x), we obtain:
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Where Discontinous Galerkin Differs |||||-

B Formulation is the same as standard FEM.
B DG difference is in the choice of basis.
B Specifically, no continuity constraint between elements.

o, 0, <l>3 0, <I>5 O

MMMM

W ¢; associated with elements.

B 2N linear basis functions in 1-D.
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DG Weak Form

/ AUz Q;dT

Q
Z/auxgbida:
Z{ —/augbi,mdm + [(au)qﬁi} :TZ}

K

k+1/2

_Lau¢i,xdx+ {(au)ﬁbi}

k—1/2

/Qcos(x)gbida;
; L cos(x)pidx

;Lcos(x)¢idx
Acos(:c)gbﬂx
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What About Element Interfaces? |||||-

B Discontinuity creates problem in the weak form:

k+1/2

_Lau¢i,xdw+ [(au)gbi} = Lcas(:p)@dm

k—1/2
B (au) is multi-valued at element interfaces.

| B Fortunately, this problem has been
R / well studied by the Finite Volume
\ul community.
oL
U B Solution: use numerical flux function

F—F—— (au) — H(uE,u, a).

K 12 K+1
® In this case use pure upwinding.
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DG Solution U

B For the same 1-D problem, u, = sin(x), we obtain:

0.8

D 06

max(u - ue)
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N
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Why DG? Ut

B DG seems to add additional DOFs for no reason.
B Why do we want to use DG over standard FEM?

B Main Benefit:
Easy to Introduce Higher Order (p > 1) interpolation

Lagrange Basis

| | | /\ Functions: p =2
:/\: E E E (l)o ¢1 (I)z
| | | | | |
K K K K
0 1 2 3 K
ref
(p + 1) Basis Functions per element
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Other Benefits of DG M

B Basic iterative solution schemes (e.g. block Jacobi) are stable for
higher order (i.e. no need for multistaging).

B Discretization lends itself to solution via p-multigrid.
B Easy parallelization.

¥ In the field of CFD for aerodynamics, these benefits seem to
outweigh the cost of extra DOFs.
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Project-X U

B DG solver package for computational fluid dynamics.

B Started in the Fall of 2002.
B Involved in seven M.S. theses and six ongoing Ph.D. theses.

B Currently:
» Approximately 100,000 lines of code.
» Capability ranges from grid generation to visualization.

» Various side projects: grid adaptation, geometry optimization,
turbulence modeling, shock limiting, unsteady studies.

» End goal is full Reynolds-Averaged Navier-Stokes in 3-D.
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Project-X Goal U

B Project X Team Goal:

» To improve the aerothermal design process for complex 3D
configurations by significantly reducing the time from geometry
to solution at engineering-required accuracy using high-order
adaptive methods

Who are we?

Todd Oliver

Chris Fidkowski
Garrett Barter

Bob Haimes

Prof. David Darmofal
Prof. Jaime Peraire

B Tan Bui
B Shannon Cheng

B James Lu
B Pete Whitney

B Doug Quattrochi
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Accuracy of Current CFD Methods U

Results of an AIAA Drag Prediction Workshop comparing the
performance of industry-standard CFD codes:

ATAA-2002-0841
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Motivation for higher order in CFD |||||-

B State of CFD in applied aerodynamics
» Finite-volume with at best second order accuracy

» Questions exist whether current discretizations are capable of
achieving desired accuracy levels in practical time

B Decrease computational time and gridding requirements by
Increasing solution order

1
1ogT:wd(— —logE+logp) — log F' + const
p

B 7T =time to solution B w = solution Complexity
B p = discretization order B d = dimension of problem
W E =desired error level (£ << 1) m F =computational speed
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Euler Equations of Gas Dynamics U

u + V- Fi(u)=0

M u Is the state vector and F; Is the inviscid flux.
¥ In two dimensions:

0 ,20u pU
_ | pru z __ | puT+p y _ puv
L I R R G Al I

| pE | puH | pvH
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Integral Form

Integrate Euler equations over tri-
angle 0 and use Green’s theorem:

If we assume u Is constant In
each triangle . ..

o)l

AEROSPACE COMPUTATIONAL DESIGN LAB

Computational Prototyping Group Seminar 17/53



First-order Accurate Finite Volume U

u constant in each triangle:

‘ H;(ur,ugr,npr) is flux function that
: determines inviscid flux in n;r direction

' from left and right states, uy, and up.

Example flux functions: Godunov, Roe,
Osher, Van Leer, Lax-Friedrichs, etc.

This discretization has a solution error
which is O(h) where h is mesh size.
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Second-order Accurate Finite Volume U

In each triangle, reconstruct a linear so-
lution, u, using neighboring averages:

Uy = ug+ (x—x%g)- Vuy,
Vug = Vug (ug,u,ug,us).

Apply conservation law on triangle:

On smooth meshes and flows, solution
error is O(h?).
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Pros/Cons of Higher-order Finite Volume U

+ Increased accuracy on given mesh
without additional degrees of free-
dom

— Difficulty in achieving higher-order
on unstructured meshes and near
boundaries

— Stabilizing multi-stage methods nec-
essary for local iterative schemes

— Matrix fill-in results in high-memory re-
guirements
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Instability of Local lterative Methods |||||-

Consider steady state problem and define discrete residual for cell j,

Z Hi(aj, g, nji) ds = 0.
k=17 7k

A Jacobi iterative method to solve this problem is,

u}”l =u; —w (OR;/0u;)” " R;(u).
For any finite w, Jacobi is unstable for higher-order. One solution is a
multi-stage method,

_ (8Rj/8u]) R;(u") <« Require_s two residual
evaluations.

u”
J
u”?
J

w (OR;/Ou;)~ Rj(ﬁ)
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Maitrix Fill for Higher-order Finite Volume

10-

First-order

351

Second-order

o000
30-r ®_ @

nz =355

Third-order

10-

. . . . ! !
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nz =601
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DG for the Euler Equations U

B Start from strong form of governing equations:
u; + V - FZ<II) = 0.

B Look for a solution uy, € V; .

B Multiply governing equation by weight function v;, € V; and
Integrate over element x € T}

/VZ; [(uh)t + V- fz] dx = 0.

B Integrate second term by parts (assume interior element):

/V%(uh)t dx—/sz.]—} dX—l—/ V;THi(u;;,u,:,ﬁ)ds:().
K K Ok
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DG and Finite Volume Um

B DG weighted residual:
/Vz(uh)t dx — / Vvi - Fidx + / V;LLTHi(uZ, u, ,n)ds = 0.
K K Ok
B For p = 0 solution, this reduces to:
(ug)tAyx + Hi(u;{, u, ,n)ds = 0.
Ok

B Thus, p = 0 DG is identical to first-order finite volume.
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DG discretization: Global view |||||-

B Find u;, € V7 such that Vv, € V7,

> {/Vf(uh)tdx—vaZ-fi dx |

KJGTh K

+/ VZTHi(uZ,u;,fl) ds—i—/ V;LFTH?(uZ,u%,ﬂ) ds = 0.
I'; o012

B Boundary conditions enforced weakly through H?(u;", u?, n)

where u! is determined from desired boundary conditions and
outgoing characteristics.

B For smooth problems, the error of this scheme is expected to be
O(hPT1).
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Pros/Cons of Higher-order DG U

_|_

+

Increased accuracy on given mesh requires additional degrees of
freedom

Higher-order accuracy not hampered on unstructured meshes nor
near boundaries

Local iterative methods are stable

Matrix fill-in maintains block sparsity of p = 0

/V%(uh)t dx — / Vvi - Fidx + / V;L’THZ-(u;L’, u, ,n)ds = 0.
K K oK
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Stability of Local lterative Methods for DG |l|i1

An elemental block Jacobi iterative method to solve this problem is,

u}”l =u; —w (OR;/0u;)” " R;(u).

where JR;/0u; is the diagonal block for the element ;.

For 0 < w < 1, elemental block Jacobi is stable independent of p.
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Matrix Fill for Higher-order DG

First-order (p = 0)
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Inviscid Flow Example

Pressure Coefficient
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Navier-Stokes Equations |||||-

B Navier-Stokes Equations: u; + V - F;(u) — V - F,(u,Vu) =0

m F,=A,Vu=(FZ F}) is the viscous flux vector

5
8
|
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DG for Elliptic Operators: First Attempt |||||-

B Model problem for viscous terms of N-S: 1-D, scalar Poisson’s
equation

—Uge = f on  |[—1,1]

B Proceed as for Euler:
» Triangulate domain into non-overlapping elements « € Ty,

» Define solution and test function space V,f

B Discrete formulation: Find u;, € V! such that Vo, € V?,

Z {_ [”h@]iiii +L(”h)w(uh)mdm} = Z {/Uhfdfl?}

ke KETY, K

B Need to define u,

CD AEROSPACE COMPUTATIONAL DESIGN LAB

== — ! Computational Prototyping Group Seminar 31/53




DG for Elliptic Operators: First Attempt |||||-

B No upwinding mechanism =- choose central flux

= 5 ()% + (un))

B Discrete formulation becomes: Find u;, € V¥ such that Vv, € VP,

S { - [tk + ]

Lr—1/2

+ [onatunde} = 3 { [ s}

K)ETh

B PROBLEM: Scheme is inconsistent!
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Inconsistency |||II-

B Examine Laplace’s equation with homogeneous Dirichlet BCs

— Uz = 0 on [—=1,1]

W If (up), = 0 everywhere, discrete equations satisfied exactly
regardless of magnitude of uy,
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First Order System Approach I

¥ Introduce new variable, ¢ = u,, such that

—(qr = f
qg—u; = 0

® Discrete formulation: Find u;, € V; and g5, € V; such that Vv, € V}
and V1, € Vp,

S { = [md] "+ [wngndey = 3 { [ onsaa} = 0

Ty
KETH 1/2 kETH

Z {/Tthd$+L(Th)xuhdx— [Thﬂ]%ﬂﬂ} — 0

Ty —
K,ETh K 1/2

® Need to choose g and u
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Bassi-Rebay Schemes |||||-

B Scheme 1. no upwinding mechanism =- choose central fluxes

1 1
= (uy +uy); §= (0 +a)

» Sub-optimal order of accuracy for odd p
» Stencil no longer compact

B Scheme 2: With [s] = s — st and {s} = 0.5(s* + s,

u=A{unt; q=1(up)z} —nrids}

» New variable, 6+([u]), is a jump penalty term.
» Optimal accuracy and compact stencil.
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lterative Solver |I|II-

B Nonlinear discrete equations can be written
R(uy) =0
B Use a preconditioned iterative scheme
uzﬂ —u - P 'R(u})

B Preconditioner
» Block-element smoothing
¢ P =M, = Block diagonal of the Jacobian

» Line-element smoothing
¢ P =M,;,. = Block tridiagonal systems from Jacobian
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Line Solver Um

B Motivation: Transport of information in Navier-Stokes equations
characterized by convection-diffusion like phenomena

» Inviscid regions: characteristic directions set by convection
» Viscous regions: diffusion effects can be stronger

M Procedure:
» Construct lines of elements based on measure of influence
» Build and invert M;;,,., which is a set of block tridiagonal
systems from the full Jacobian
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Example Lines and Performance U

Trailing edge of NACA 0012
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p-Multigrid Solver: Motivation U

B Observation: Smoothers are inefficient at eliminating low
frequency error modes on fine level

B h-Multigrid
» Spatially coarse grid used to correct solution on fine grid
» Grid coarsening is complex on unstructured meshes

B p-Multigrid (Ronquist & Patera, Helenbrook et al., Fidkowski &
Darmofal)

» Low order (p — 1) approximation used to correct high order (p)
solution

» Natural implementation in DG discretization on unstructured
meshes

AEROSPACE COMPUTATIONAL DESIGN LAB

Computational Prototyping Group Seminar 39/53




p-Multigrid Solver: Full Multigrid U

W [terate on coarsest levels first and use these solutions as initial
guesses for fine level solutions.

B Line solver used as smoother
B Full Approximation Scheme (FAS) used to deal with non-linearity
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NACA 0012 Test Case |||||-

M = 0.5, Re = 5000, a = 0
Grids are from Swanson at NASA Langley
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Drag Error Convergence
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CPU Timing U
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h-Adaptation U

B For smooth flows, large high-order elements are ideal for
accuracy and efficiency

B When singularities are present, h-adaptation is necessary to
maintain accuracy

B Where to adapt? One option is output-based adaptation (Venditti
& Darmofal)
» Pick output of interest (lift, drag) and a desired error tolerance
» Solve for output adjoint in addition to the flow solution

» Use adjoint and flow solutions to estimate which elements
contribute most/least to output error

» Refine/coarsen mesh until the output error tolerance is met
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h-Adaptation Example

NACA 0012 Transonic test case: M = 0.8, o = 1.25°
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NACA 0012: M/ = 0.8, a = 1.25° U

= P1
49,836 DOF

‘Cd — Cd,exact| —
4.0%107°

SO,
vy
g'AVAYA
e
v R
o AV AV
A

30.288 DOF et i wA

‘Cd — C1d,exact| —

1.2% 1075

AN Eavy
N VAVAY S

PEivavas

ﬂfﬂ%‘%ﬁiéaﬂwﬂhﬁﬂ
VAN N PRGNS
watlayl VS "
A" AN
RO
S
NAWN%‘QVAX%XJ

| AEROSPACE COMPUTATIONAL DESIGN LAB

Computational Prototyping Group Seminar 46/53



Ongoing Work U

Turbulence modeling (Todd Oliver)

Shocks (Garrett Barter)

Adaptation (Mike Park and Chris Fidkowski)

Optimization (James Lu)

Unsteady + Frequency Domain Solver (Tan Bui)
Axisymmetric Solver + Plasma Physics (Shannon Cheng)
Explicit solver (Pete Whitney)

Hypersonic Flow (Doug Quattrochi)
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Questions? U
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BR1 Scheme Um

B No upwinding mechanism =- choose central fluxes

1 o
u=§(Uﬁ+u5); q=§(qff+q;}f)

B Sub-optimal order of accuracy for odd p
B Stencil no longer compact

R
]
qk-l qk qk+1

| | qk'l | | | |
Uk ' U PoU

| | | qk | | |
I I uk-l I uk I uk+1 I I
| | | | qk+1 | |
[ [ [ uk [ uk+1 [ uk+2 [
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BR1 Scheme U

m Define jump, -], and average, {-}, operators:

[s] = s — s and {s} = %( Ly sty

B Central fluxes become
u=Aupf; q={(un)zt—1{0}

M J given by following problem: Find § € V¥ such that V7, € V?,

> /Th5dl‘ => [[[uh]]{Th}}

KETY, K n
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BR1 Scheme U

B BR1 becomes: Find u;, € V; and such that Vv, € V7,

> /(Uh)x(uh)xdw

KJGTh K
=3 [fnb{ o)} + fond({(un)e} = (6D)] = 3 [ enfdo
n /‘{,ETh R
I I | Rk | | |
I Ut Ot Uk O Upag Ot |
. I I a<' I | I I
B Stencil extended by o de- T Ura ukIl U, | |
pendence on uy, | | O | |
| "Uka DUk TUgyg |
| | | | Ocr1 | |
| | DUk T Ugsr T Upsp
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BR2 Scheme U

B Goal: Eliminate extended stencil
B Approach: Modify auxiliary variable, 9, previously defined by:

Y / mdde = 3 [[unl{m}

KZETh K n

B New variable, ¢, given by: Find 6¢ € V} such that V7, € V?,

ny
B New fluxes have same form as before

u=Aupt; q={(un)z} — N5}
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BR2 Scheme U

B Replacing {0} in BR1 by n+{é;} gives BR2
W For proper choice of n¢, can prove optimal order of accuracy
B Stencil is compact

Ry

I I |
U1 . Uk . Ukn

/
5«1/2 §<+1/2
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