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Example

Model: Finite element discretization of a scalar convection-diffusion-
reaction equation; scalar = fuel concentration

Sample fuel concentration contours

reaction rate parameters
average fuel concentrations at cut-planes
finite element solution for fuel concentration
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Inverse Problem

Given fuel concentrations, determine reaction rate parameters

Fz2 ) cal jl ate p Giveny
- y y( ) :
Parameters 12 Output index
Other applications: @ Medical imaging

@ Circuit identification
@ Model fitting
@ Geophysics



Deterministic Inverse Solution

H2 ) Calculate p* y Giveny
T
pod
D JiE Output index

Determine the “best” value of the parameter vector:
p* =arg min|ly(p) —Yl2 (minimization problem)
7

subjectto  R(u; p) =0, (model equations)

y(p) = y(u(p)),
pneD. (apriori knowledge)



Deterministic Inverse Solution (ctd.)

Shortcomings:
@ Experimental errors not included

@ No uncertainty quantification for the best estimate p*
@ The inverse problem may be ill-posed:

@ no unique solution p*
@ p* sensitive to small perturbations in y

Practical solution is some form of regularization, for example:

*

w = argminly(u) ~ o + Blulz

B = regularization parameter



Statistical Inverse Solution

112 Calculate posterior PDF y Giveny and e

€i

D

Output index

For example, e = normally-distributed measurement errors, each with
standard deviation o.

With this measurement error, likelihood function is:

= probability of measuring y given u



Posterior Probability Distribution
Using Bayes’ theorem:

1
p(Y)

so that the posterior PDF is (assuming a uniform prior p(u))

P(uly) = —=P(Y[r)p(k),

_ exp [~z (Y —y(w)" (Y —y(n)], ifpeD
Pluly) o {0, i otherwise.

The posterior PDF is inferred from the
measured outputs, y, and a model for the
measurement error, o, using y(u).

How do we describe p(u|y)?




MCMC Sampling

Use Markov Chain Monte Carlo (MCMC) to
sample the posterior PDF

@ Take a random walk in parameter space
@ Generate sequence: ', u?, ...

Taking a step given p = p':
@ Pick p/ from a proposal distribution, g
@ Accept i/ (i.e. 't = p') with probability:

oy p(p/ly)a(e )
alplpe) = min {1, 0 (i)

)

Otherwise reject it: ('t = p)



The Proposal Distribution, q (')

Choice of q(u/|p) governs exploration of the parameter space, and
affects the acceptance probability «.
H, A,

1. Uniform box

@ Size A = [A1, Az] centered at p Curex % N
® q(p'[p) = a(p|p') = const.

@ Inefficient for anisotropic posteriors Unifofm roposal boundary

Posterior PDF contours

2. Stretched ellipse
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1
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Sampling Statistics
Nm = number of MCMC samples

@ u' i = 1..Ny, are drawn from the posterior probability distribution

@ for N, — oo, expect convergence to the actual probability
distribution of p*

@ for finite Ni, can only estimate statistics

Estimator of a statistical quantity:

4 M | mean of () = 4
=2 gl variance of y;  g(k) = (1 — [55)
i) P (1; = sample mean)

® Np, is usually tens of thousands
@ Each evaluation of acceptance probability requires a forward run
@ Cost becomes prohibitive for large simulations



Model Reduction

Goals:

@ Create a computationally inexpensive emulator of the forward
simulation

@ Require accuracy for u € D
@ Retain physics of the problem
@ Take into account non-linearities

Assumption
For p € D, solution u resides in a low dimensional manifold —i.e. can
represent it well using n <« N degrees of freedom.



Model Reduction Using Linear Projection

N = # unknowns in full system, (= millions)
n = # unknowns in reduced system, (= 100)

U=Au+Bpu ur ou;, ©'e ="
1 N 1

n
[ I
N - A + N =
Columns =
basis vectors

Multiply original system by &' to obtain the reduced system:

U =®TAd U + ®TB @ Can precompute A, and B;
A @ System is of size n

@ No order N operations to run the

' Br
1
n|:| = |:| + |:| reduced system



Model Reduction for Nonlinear Systems

u="f(u,u), f(-,u)=nonlinear function

Multiplying the original system by @' we obtain a “reduced system”:

® n unknowns in reduces system
but ...

1 @ Cannot precompute any matrix

n|:| = f(I D’“) products because of f

ur = ¢Tf(u,;1,)

@ Need N nonlinearity evaluations
— this will dominate the cost!



Nonlinearity Expansion
Key assumption: f(u, ) resides in a low manifold of dimension m ~ n.
1 m
[,
= ¢f

f(u, ) Columns =
basis vectors

f(u,p) ~ o', f eRM N

Substituting into the reduced system:
U =@ & f, (N not present)
nxm

But, evaluating f; directly still involves N:

fr = (&) f(u, p) (order N dependent)
N N——
mxN Nx1



Masked Projection

Compute f; = nonlinearity expansion coefficients approximately:

Zis an m x N mask matrix
fup) ~ off 8

Zf(u,p) ~ Zo'f, @ Mostly zeros
fr o~ (Z&")71zf(u, p) @ Ones in columns where f is
’ t
= fu,p) ~ o (zoN1zi(u, p) 0 be evaluated
—_———

N N
\UERxm Z=m 1

1

@ W =o' (zo")~1 can be precomputed
@ Zf(u, u) consists of m evaluations of the nonlinearity
@ Similar to gappy POD [Everson Sirovicz, 1995]



Comparison to Direct Projection

Direct Projection

f(u.p) = o' 1,
DD
Nl | =
~~
N 1 m
I |- [

Masked Projection

Zi(u, p)~ Zd" 1,



Reduced Nonlinear System

Using f(u, ) ~ W' (Zu, u),

=n Er

Ur = (DTf(U,/,I,)
~ o'W f(zu,u) n|:|
E; cRNXm

Steps
@ Form @ and W' basis matrices by, for example, POD on a set of
shapshots

@ Choose a mask Z and calculate W = &f(z®f)~1
@ Calculate E;, = T W' offline

@ Each forward solve of reduced model now involves only m =~ n
nonlinearity evaluations



Choosing a Mask, Z

Accuracy of reduced model depends on Z
@ Option 1: Choose Z to minimize cond(Z®') [Willcox, 2006]

@ Option 2: Choose Z to minimize error between the masked
projection and the full projection of K snaphsots, 5}; :

= argmin Z I(®")T &l — (zo") "zl |5
k=1
BPIM = Best Points Interpolation Method [Nguyen et al, 2007]

@ Option 3: Choose i + 1st mask point recursively as the index
where the error between <I>f 41 and its reconstruction using the first
i basis vectors is maximum.

EIM = Empirical Interpolation Points Method [Nguyen et al, 2007]



Convection-Diffusion-Reaction Equations

u = scalar fuel concentration

V- (Uu)-V(@Vu)+f(u,u) = 0 inQ,
u Up on oQp,
Vu-n= 0 on 9Q\0Qp,

u = fuel concentration
U = velocity (constant)
v = diffusion coefficient (constant)

Nonlinear reaction term:

f(u,p) = Au(c — u)ed—i, p = (In(A),E)



Combustor Model

18mm
3mm
Fuel f
3 ¢ 9mm
Oxidizer : 1[?[n

z N

y 3mm\
1mm — Measurement Planes



Finite Element Discretization

@ 2D: Streamwise Upwind Petrov Galerkin (SUPG)
@ 3D: Discontinuous Galerkin (DG)

General discrete form (N unknowns, M nonlinearity evaluations)
R(u; u) = Ro +Au + Ef(Du,pu) =0

D interpolates u to M quadrature points
E sums up the nonlinear evaluations

Reduced model (n unknowns, m nonlinearity evaluations):

Rr +ArUr + Er f(DrUr,l,l') == O

E, ®TEW < R™M
D, ZDd e R™XN



2D Reduced Model Performance

@ Basis constructed from
K = 196 snhapshots.

@ = =23 x 23 test grid
in parameter space

Average relative error:

Iy -yl
eyl

n m Erel Online time

5 | 50 || 2.25E-2 1.59E-5

10 | 50 || 3.03E-3 1.61E-5

20 | 50 || 1.18E—-4 1.63E-5

30 | 50 || 1.26E-5 1.71E-5

40 | 50 || 2.47E—-6 2.00E-5

Online time is relative to FEM solution

10

10°F N

_::__::_

n = 40, m = 50 field comparison with full order solution



2D Reduced Model Basis Vectors

Obtained by Proper Orthogonal Decomposition (Karhunen Loéve expansion)
of 196 snapshots in a 14 x 14 grid in parameter space. First four modes:

Mode 1

Mode 2

===

Mode 3

Mode 4

—

[m] = = =

Dac



2D Mask Points

For m = 15, the mask Z € R™*N contains 15 nonzero entries. These
are the points at which the nonlinear term is evaluated.
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2D Inverse Problem Results

@ Generated y with FEM model and
o = 1.5% measurement error

@ Goal: determine PDF of parameters
pi = log(A*) and 3 = E*

@ Constructed a Markov chain of size
Nm = 50,000 with the n = 40,
m = 50 reduced model
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3D Reduced Model Performance

@ Full-order FEM model: 8.5 N
million unknowns (13h CPU AN
time) W \\
@ Basis constructed from SE 0 3 ' ’ '
K = 169 snapshots. i S
@ = =17 x 17 test grid in =10 \‘\‘\«
parameter space EE% 1
@ Reduced model: .1s CPU time S
Finite element sol. (8.5 million unknowns) n = 40, m = 50 reduced model (EIM)

[ ] 0.2




3D Reduced Model Basis Vectors

POD of 169 snapshots in a 13 x 13 grid in parameter space. First four modes:

Mode 1 Mode 2
Mode 3 Mode 4

= ==



3D Inverse Problem Results

@ Generated y with FEM model and
o = 1.5% measurement error

@ Goal: determine PDF of parameters
i = log(A*) and 5 = E*

4000 4500

4000
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@ Constructed a Markov chain of size
N = 50,000 with the n = 40,
m = 50 reduced model
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Posterior Anisotropy

Low acceptance rate of uniform proposal attributed to anisotropy in the
posterior PDF, p(y|u) :

W oa1f /

/ 'V

7 Uniform proposal region

L L L L L L
53 5.4 5. 6 5.7 5.8

" Inea)

Improve acceptance rate via a stretched-Gaussian proposal



3D Inverse Problem Results, Stretched Proposal

@ Used § = 1.5 for the dimensionless
step-size parameter

@ Finite differencing for dy/ou
@ Acceptence rate now 25%

@ Only needed Ny, = 5,000 samples
for same statistics

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
ICMC Updates

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
MCMC Updates

[
52 54 5§ 58 B
Hy C

Note: MCMC runs with full-order
model are prohibitive (13h CPU
per forward solve)



Summary and Conclusions

@ Presented a nonlinear model reduction technique in a projection
framework

@ Built on previous work in gappy POD, missing point estimation,
masked projection, coefficient-function approximation

@ Applied reduction to a parameter estimation problem in a
Bayesian inference setting

@ Vast speedup of reduced model makes such an inverse problem
solution possible
@ Additional work:

@ Model-constrained adaptive sampling to generate snapshots as
number of parameters is increased
@ Quantification of model reduction errors on statistics of interest
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