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Introduction

Complex CFD simulations made possible by
Increasing computational power

Improvements in numerical algorithms

New liability: ensuring accuracy of computations
Management by expert practitioners is not feasible for
increasingly-complex flowfields

Reliance on best-practice guidelines is an open-loop solution:
numerical error unchecked for novel configurations

Output calculations are not yet sufficiently robust, even on
relatively standard simulations



AIAA Drag Prediction Workshop III
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Drag coefficient predictions for the DLR-F6 wing-body at M = 0.75, CL = 0.5, Re = 5 × 106.

Variation of 25 drag counts: 1 drag count ≈ 4 passengers for a
large transport aircraft

Only slight improvement over results from previous two workshops



“Mesh Convergence” Comparison

Same code run on independently-generated meshes of two wing-only
geometries [Mavriplis, 2007]

A DPW wing-alone test case Drag convergence with uniform refinement

Highly-disparate length scales in this flow are not adequately
resolved using current meshes

Improvements in computational power alone will be insufficient to
decrease numerical error to acceptable levels in the near future



Improving CFD Robustness

Error estimation
“Error bars” on outputs of interest are necessary for confidence in
CFD results

Mathematical theory exists for obtaining such error bars

Recent works demonstrate the success of this theory for
aerospace applications

Mesh adaptation
Error estimation alone is not enough

Engineering accuracy for complex aerospace simulations
demands mesh adaptation to control numerical error

Automated adaptation improves robustness by closing the loop in
CFD analysis



Goals of this Work

1 Review the theory behind output-based error estimation

2 Identify similarities between discrete and variational
approaches

3 Present existing and new strategies for mesh adaptation

4 Showcase recent work in aerospace applications

5 Identify key challenges and areas for further research
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Discrete Adjoint Definition

Consider Nh algebraic equations and an output,

Rh(uh) = 0, Jh = Jh(uh)

uh ∈ R
Nh is the vector of unknowns

Rh ∈ R
Nh is the vector of residuals

Jh(uh) is a scalar output of interest

The discrete output adjoint vector, ψh ∈ R
Nh , is the sensitivity of Jh to

an infinitesimal residual perturbation, δRh ∈ R
Nh ,

δJh ≡ ψT
h δRh



Discrete Adjoint Equation
The linearized perturbed equations are:

∂Rh

∂uh
δuh + δRh = 0,

Also linearizing the output we have,

δJh =
∂Jh

∂uh
δuh =

linearized equations
︷ ︸︸ ︷

ψT
h δRh

︸ ︷︷ ︸

adjoint definition

= −ψT
h

∂Rh

∂uh
δuh

Requiring the above to hold for arbitrary perturbations yields the linear
discrete adjoint equation

(
∂Rh

∂uh

)T

ψh +

(
∂Jh

∂uh

)T

= 0



Variational Adjoint Definition

Galerkin weighted residual statement: determine uh ∈ Vh such that

Rh(uh, vh) = 0, ∀vh ∈ Vh

Vh is a finite-dimensional space of functions

Rh(·, ·) : Vh × Vh → R is a semilinear form

Jh(uh) : Vh → R is a scalar output

The output adjoint is now a function, ψh ∈ Vh, that is the sensitivity of
Jh to a residual perturbation, δr:

δJh ≡ (δrh, ψh)

where (·, ·) : Vh × Vh → R is a suitable inner product



Variational Adjoint Statement

The Fréchét-linearized equations are:

R′

h[uh](δuh, vh) + (δrh, vh) = 0, ∀vh ∈ Vh,

Also linearizing the output we have,

δJh = J ′

h[uh](δuh) =

linearized equations
︷ ︸︸ ︷

(δrh, ψh)
︸ ︷︷ ︸

adjoint definition

= −R′

h[uh](δuh, ψh)

Requiring the above to hold for arbitrary perturbations yields the linear
variational adjoint statement: find ψh ∈ Vh such that

R′

h[uh](vh, ψh) + J ′

h[uh](vh) = 0, ∀vh ∈ Vh



Continuous Adjoint

The continuous primal solution, u ∈ V, satisfies

R(u, v) = 0, ∀v ∈ V,

The continuous adjoint solution, ψ ∈ V, satisfies

R′[u](v, ψ) + J ′[u](v) = 0, ∀v ∈ V

V is an infinite-dimensional
space

ψ is a Green’s function
relating source residuals to
output perturbations
[Giles and Pierce, 1997]

x-momentum lift adjoint, M∞ = 0.4, α = 5o



Consistency

Primal consistency requires that the continuous solution u
satisfies the discrete variational statement,

Rh(u, vh) = 0, ∀vh ∈ Vh

Similarly, the combination of Rh and Jh is adjoint consistent if

R′

h[u](vh, ψ) + J ′

h[u](vh) = 0, ∀vh ∈ Vh

[Arnold et al , 2002; Lu, 2005; Hartmann, 2007; Oliver, 2008]

Asymptotic adjoint consistency is a weaker requirement that the
above holds in the limit h → 0, over suitably normalized vh ∈ Vh.

An adjoint-inconsistent discretization can
pollute the error estimate with noise
lead to adaptation in incorrect areas



Finite Perturbations

Above adjoints are valid for infinitesimal residual perturbations

Finite perturbations can be considered through mean-value
linearizations:

δJh = (ψmv
h )T δRh, δJh = (δrh, ψ

mv
h )

where ψmv
h is the adjoint obtained when mean-value linearizations

are used
[Pierce and Giles, 2000; Becker and Rannacher, 2001; Barth and
Larson, 2002; Hartmann and Houston, 2002]

In practice, mean-value linearizations are not typically
implemented and the equations become approximations:

δJh ≈ ψT
h δRh, δJh ≈ (δrh, ψh)



Adjoint Implementation

The discrete adjoint, ψh, is obtained by solving a linear system

This system involves linearizations about the primal solution, uh,
which is generally obtained first

When the full Jacobian matrix, ∂Rh
∂uh

, and an associated linear
solver are available, the transpose linear solve is straightforward

When the Jacobian matrix is not stored, the discrete adjoint solve
is more involved: all operations in the primal solve must be
linearized, transposed, and applied in reverse order
[Giles et al , 2003; Nielsen et al , 2004]

In unsteady discretizations, the adjoint must be marched
backward in time from the final to the initial state
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Forms of Error Estimation

Local choices
1 Discretization error: difference between the discrete solution and

the exact, continuous solution
2 Residual error: result of substituting the approximate solution into

the underlying PDE – nonzero residuals indicate where the
equations are not strongly satisfied

These are generally sufficient for driving adaptation in elliptic
problems, such as elasticity or low-speed flows. [Verfurth, 1994]

However, in hyperbolic problems (i.e. aerospace CFD applications),

Local residuals may not always be large in certain crucial areas
that significantly affect the solution downstream

Error estimates based on local residual or discretization errors fail
to capture these propagation effects [Houston and Süli, 2002]



Output Error Estimation

Output error: difference between an output computed with the
discrete system solution and that computed with the exact solution

Output error estimation techniques

Identify all areas of the domain that are important for the accurate
prediction of an output

Account for propagation effects

Require solution of an adjoint equation

Output error estimates can be used to:

Ascribe confidence levels to engineering outputs in the presence
of numerical errors

Drive an adaptive method to reduce the output error below a
user-specified tolerance



Two Discretization Levels

In practice, cannot solve on an infinite-dimensional space, V

Consider two discretization spaces:

A coarse one, VH , with NH degrees of freedom

A fine one, Vh, with Nh degrees of freedom

x

u

hu

δuhuH

The “fine” discretization (h) is obtained from the coarse discretization
(H) by using a smaller mesh size or increased interpolation order



Adjoint-Weighted Residual Method

Goal: Calculate JH(uH) − Jh(uh) = output error estimate

x

u

hu

δuhuH

Could solve for uh and recompute the output – expensive and not
directly useful for adaptation

Idea: uH generally does not satisfy the fine-level equations. That
is, Rh(uH , vh) 6= 0. Instead, uH solves: find u′

h ∈ Vh such that

Rh(u′

h, vh) −Rh(uH , vh) = 0 ∀vh ∈ Vh



Adjoint-Weighted Residual Method (ctd.)

x

u

hu

δuhuH

−Rh(uH , vh) is a residual perturbation on the fine discretization

Suppose we have an adjoint solution on the fine mesh: ψh ∈ Vh

The adjoint lets us calculate the output perturbation from the point
of view of the fine discretization:

δJh = Jh(uH) − Jh(uh) ≈ −Rh(uH , ψh)

[Becker and Rannacher, 1996; Giles et al , 1997]



Adjoint-Weighted Residual Example

NACA 0012, M∞ = 0.5, α = 5o

Interested in lift error in a p = 1 DG solution. Using p = 2 for fine space, Vh

p = 1 Mach contours p = 2 Mach contours

Adjoint-based error estimate: −Rh(uH , ψh) = −.001097

Actual difference between p = 2 and p = 1 solution outputs is
δJh = −0.001099



Approximating ψh

How do we calculate ψh = the adjoint on the fine discretization?

Options:
1 Solve for uh and then ψh – expensive! Potentially still useful to

drive adaptation. [Solín and Demkowicz, 2004]

2 Solve for ψH ∈ VH = the adjoint on the coarse discretization:

R′

H [uH ](vH , ψH) + J ′

H [uH ](vH) = 0, ∀vH ∈ VH ,

1 Reconstruct ψH on the fine discretization using a higher-accuracy
stencil. Smoothness assumption on adjoint.
[Rannacher, 2001; Barth and Larson, 2002; Venditti and Darmofal
2002; Lu, 2005; Fidkowski and Darmofal, 2007]

2 Initialize ψh with ψH and take a few iterative solution steps on the
fine discretization.
[Barter and Darmofal, 2008; Oliver and Darmofal, 2008]



Error Estimation Summary

1 Solve the coarse-discretization forward and adjoint problems: uH

and ψH

2 Pick a fine discretization “h” (mesh refinement or order
enrichment)

3 Calculate or approximate ψh = adjoint on the fine mesh

4 Project uH onto the fine discretization and calculate the residual
Rh(uH , vh)

5 Weight the fine-space residual with the fine-space adjoint to
obtain the output error estimate

6 Note: the computed output error Jh(uH) − Jh(uh) is an estimate
of the true error, not a bound
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Mesh Adaptation

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?



Error Localization
Assuming the coarse and fine spaces are nested, the error estimate
can be written as

JH(uH) − Jh(uh) ≈ −
∑

κH∈TH

∑

κh∈κH

Rh(uH , ψh|κh),

TH is the coarse triangulation

κH /κh is an element of the coarse/fine
triangulation

|κh refers to restriction to element κh

κ h

κH

Elemental contributions
⇒ error indicator:

ǫκH ≡
∣
∣
∣

∑

κh∈κH

Rh(uH , ψh|κh)
∣
∣
∣

[Becker and Rannacher, 2001]
[Giles and Süli, 2002]
[Hartmann and Houston, 2002]
[Venditti and Darmofal, 2002]



Error Localization (ctd.)

Error indicator

ǫκH =
∣
∣
∣

∑

κh∈κH

Rh(uH , ψh|κh)
∣
∣
∣

Lift error indicator on a p = 1 DG solution

Continuous FEM discretizations require a more careful
bookkeeping of the elemental contributions

Refinement in areas where ǫκH is large will reduce the residual
there and hence improve the output accuracy



Adaptation Mechanics

1 h-adaptation: only triangulation is varied
2 p-adaptation: only interpolation order is varied

h-adaptation is key in CFD, where solutions often possess localized,
singular features. However, hp-adaptation is becoming popular with
growing popularity of high-order methods.

Given an error indicator, how should the mesh be adapted?

Refine some/all elements?

Incorporate anisotropy (stretching)?

How to handle elements on the geometry?

Keeping in mind that mesh generation is difficult in the first place and
that adaptation needs to be automated to enable multiple iterations



Which Elements to Refine? [Nemec et al , 2008]

Constant threshold: refine all elements above a constant error indicator

Decreasing threshold: threshold decreases with each iteration



Meshing and Adaptation Strategies

Metric-based anisotropic mesh regeneration (e.g. BAMG software)

e
2

h
2

e
1

h
1

Riemannian ellipse

Edge Swap Edge Split Edge Collapse

Local mesh operators, and direct optimization

Cut Cell

Geometry
Boundary

Cut-cell meshes: Cartesian and simplex
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High-Lift RANS [Venditti and Darmofal, 2002]

Comparison to pure Hessian-based adaptation

Lift convergence
Output (left) and Hessian (right) adapted meshes

Significantly improved accuracy per degree of freedom when using
output adaptation



Launch Abort Vehicle [Nemec et al , 2008]

M∞ = 1.1, α = −25o, two million cells in final mesh



Sonic Boom [Park, 2008]

Tetrahedral cut-cell finite volume
discretization

Direct anisotropic optimization
with local operators

Sonic boom adaptation on
pressure signature Surface mesh
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Transonic Nozzle [Hartmann and Houston, 2002]

Discontinuous Galerkin, p = 1, discretization

The output of interest is the density immediately before the shock

Output-adapted, 172k dof, error = 7 × 10−6 Residual-adapted, 343k dof, error = 3 × 10−5



Hypersonic Heat Transfer [Barter and Darmofal, 2008]

High-order DG discretization

PDE-based artificial viscosity for
shock stabilization

M∞ = 17.605, Re = 376, 930
over a cylinder geometry

Output = integrated heat flux
Initial mesh

Adapted mesh, p = 2
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Simplex Cut Cells [Fidkowski and Darmofal, 2007]

High-order DG discretization

Cubic spline geometry

Metric-driven re-meshing with
BAMG

Laminar flow in 2D (Re = 5, 000)

Spline−edge
intersection

Spline
geometry

Cut edge
Embedded
    edge

Drag-adapted mesh, p = 3
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Robust Mesh Adaptation

Still a challenge and an area of ongoing research for complex 3D
configurations with anisotropic solutions

Largest barrier limiting the application of output-based adaptation
to simple geometries and/or simplified physics

To be practical for aerospace applications, automated adaptation will
also need to efficiently resolve curved, anisotropic features:

δ

(a) Isotropic

δ

(b) Linear anisotropic

δ

(c) Curved anisotropic



Computable Error Bounds

Example: Park’s sonic
boom adaptation

Error is severely
under-predicted on the
coarse initial meshes

Estimate improves only as
shock is resolved
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Output error estimate history

Research exists on computation of strict, constant-free, output
error bounds for certain classes of problems
[Peraire et al , 1997–2006]

Additional research necessary to extend to equation sets relevant
to aerospace CFD applications



Unsteady Applications

Unsteadiness arises even for nominally steady applications
[Nemec et al , 2008]

Time accurate adjoint solutions require substantial algorithmic and
computational overhead

Unsteady adjoint analyses exist in shape optimization research
[Lee et al , 2006; Nadarajah and Jameson, 2002–2007; Rumpfkeil and
Zingg, 2007]

Time-step adaptive results have already been demonstrated
[Mani and Mavriplis, 2007]

Future research: combined spatial and temporal adaptation for
problems exhibiting non-smooth spatial and temporal features



Concluding Remarks

Robust CFD analyses of complex configurations require error
estimation and mesh adaptation

Local interpolation or residual-based error estimates are
inadequate for the hyperbolic problems common in aerospace
applications

Mathematical theory exists for output error estimation using
adjoint solutions and residual evaluations on a refined mesh

Robust mesh adaptation is one of the largest barriers for the
effective implementation of these methods

Computable error bounds and unsteady extensions are additional
areas of ongoing work
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