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Introduction

Complex CFD simulations made possible by
@ Increasing computational power
@ Improvements in numerical algorithms

New liability: ensuring accuracy of computations

@ Management by expert practitioners is not feasible for
increasingly-complex flowfields

@ Reliance on best-practice guidelines is an open-loop solution:
numerical error unchecked for novel configurations

@ Output calculations are not yet sufficiently robust, even on
relatively standard simulations
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Solution Index

Drag coefficient predictions for the DLR-F6 wing-body at M = 0.75, C, = 0.5, Re = 5 x 106.

@ Variation of 25 drag counts: 1 drag count ~ 4 passengers for a
large transport aircraft (ADIGMA goal: 10 counts)

@ Only slight improvement over results from previous two workshops

K. Fidkowski (UM) DLR 2009 May 4, 2009 5/59



Improving CFD Robustness

Error estimation

@ “Error bars” on outputs of interest are necessary for confidence in
CFD results

@ Mathematical theory exists for obtaining such error bars

@ Recent works demonstrate the success of this theory for
aerospace applications

Mesh adaptation

@ Error estimation alone is not enough

@ Engineering accuracy for complex aerospace simulations
demands mesh adaptation to control numerical error

@ Automated adaptation improves robustness by closing the loop in
CFD analysis
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9 Output Error Estimation
@ Discrete Adjoint Solutions

K. Fidkowski (UM) DLR 2009 May 4, 2009 8/59



Discrete Adjoint Definition

Consider Ny, algebraic equations and an output,

Rn(up) =0,  Jn = Jn(un)

@ up € RM s the vector of unknowns
@ R, € RV s the vector of residuals
@ Jy(up) is a scalar output of interest

The discrete output adjoint vector, v, € R\n, is the sensitivity of Jj, to
an infinitesimal residual perturbation, éRy, € RNn

6Jn = P ORy,
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Discrete Adjoint Equation

The linearized perturbed equations are:

ORy,
—0 R, =0
ur, Uh + 0Rp )

Also linearizing the output we have,

linearized equations
T 8Rh
h auh

adjoint definition

5Uh

Requiring the above to hold for arbitrary perturbations yields the linear
discrete adjoint equation

ORp\ " GA
(Gor) wn+ () =0
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Variational Adjoint Definition

Galerkin weighted residual statement: determine uy, € V}, such that

Rn(un,vh) =0, Wh € Wy

@ )}, is a finite-dimensional space of functions
® Ru(+ ) : Vh X Vi, — Ris a semilinear form
® Jn(up) : Vh — Ris a scalar output

The output adjoint is a function, ¥, € V, that is the sensitivity of 7, to
a residual perturbation, or:

dJh = (rn, ¥n)

where (-, -) : V) x V,, — R is a suitable inner product
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Variational Adjoint Statement

The Fréchét-linearized equations are:
Ri[un](un, Vi) + (0rh, V) =0, Vvp € V,

Also linearizing the output we have,

linearized equations
-

6 = Tnlun](dun) = (6rn, ¥n) = —Rp[un](dun, ¥p)

adjoint definition

Requiring the above to hold for arbitrary perturbations yields the linear
variational adjoint statement: find ¢, € V}, such that

Ru[Un](Vh, ¥n) + Jnlunl(vh) =0,  Wvh € Wy
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Continuous Adjoint

The continuous primal solution, u € V, satisfies

R(u,v) =0, Y e,

The continuous adjoint solution, ¥ € V, satisfies

R'[u](v,v) + J'[u](v) = 0, Wwevy

@ VYV is an infinite-dimensional
space

@ 1) is a Green’s function 2

relating source residuals to
output perturbations
[Giles and Pierce, 1997]

x-momentum lift adjoint, Moo = 0.4, o = 5°
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Output Error Estimation

Output error: difference between an output computed with the
discrete system solution and that computed with the exact solution

Output error estimation techniques

@ Identify all areas of the domain that are important for the accurate
prediction of an output

@ Account for propagation effects inherent to hyperbolic problems
@ Require solution of an adjoint equation
Output error estimates can be used to:

@ Ascribe confidence levels to engineering outputs in the presence
of numerical errors

@ Drive an adaptive method to reduce the output error below a
user-specified tolerance
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Adjoint-Weighted Residual Method

Goal: Calculate Jy(uy) — Jh(up) = output error estimate ]
u

@ Uy € Vy = coarse solution

@ uj € V, = fine solution

| | | | —x

@ Could solve for u, and recompute the output — expensive and not
directly useful for adaptation

@ ldea: uy generally does not satisfy the fine-level equations. That
iS, Rn(Un,Vn) # 0. Instead, uy solves: find uj, € Vy such that

Rh(ug,vh) — Rh(UH,Vh) =0 Wy eV,
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Adjoint-Weighted Residual Method (ctd.)

® —Rn(uy,Vvp) is a residual perturbation on the fine discretization
@ Suppose we have an adjoint solution on the fine mesh: ¥, € V;

@ The adjoint lets us calculate the output perturbation from the point
of view of the fine discretization:

0JIh = In(Un) — In(un) = —Rn(un, ¥p)

[Becker and Rannacher, 1996; Giles et al , 1997]
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Approximating vy,

How do we calculate vy, = the adjoint on the fine discretization?

Options:
© Solve for u, and then 1, — expensive! Potentially still useful to
drive adaptation. [Solin and Demkowicz, 2004; Hartmann et al ]

@ Solve for vy € V4 = the adjoint on the coarse discretization:
Rulunl(Ve, n) + Fiun](ve) =0, Vv € Vi,

@ Reconstruct ¥, on the fine discretization using a higher-accuracy
stencil. Smoothness assumption on adjoint.
[Rannacher, 2001; Barth and Larson, 2002; Venditti and Darmofal
2002; Lu, 2005; Fidkowski and Darmofal, 2007]

@ Initialize vy, with 1, and take a few iterative solution steps on the
fine discretization.
[Barter and Darmofal, 2008; Oliver and Darmofal, 2008]
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9 Output Error Estimation

@ Entropy Adjoint Connection
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Entropy Adjoint Connection

Collaborative work with P. L. Roe

@ Adjoint-based output error estimation is “state of the art” but it
@ requires solution of an adjoint problem for each output
@ targets only requested outputs
@ Currently investigating connection between entropy variables
and adjoint solutions in order to derive an adaptive indicator that
@ does not require solution of an adjoint problem
@ produces an “overall good” solution

For a conservation law of the form
Aiaiu =0
the entropy variables, v, satisfy an adjoint equation:

AiTaiV =0
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Entropy Adjoint Connection

@ The entropy variables are readily computable from the state u:

.
=S 1pV? pu p]

)

y=1 2p’ ' p p

@ The output associated with the entropy variable adjoint is

J :/Finids
Q

where F;(U) is the entropy flux, and U is the entropy function:
U:—pS/(’y—l), Szlnp_’ylnp7
@ J measures the net entropy generation in the domain

@ The analysis extends to Navier-Stokes

@ |dea: use v as an adjoint solution in output error estimation

o Targets areas where entropy generation is not predicted well
@ Does not require solution of an adjoint problem
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@ Mesh Generation and Adaptation
@ Hanging Node Refinement
@ Simplex Cut Cells
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Mesh Generation and Adaptation

@ Mesh generation is often the most challenging and
time-consuming aspect of CFD

@ Curved boundary representation required by discontinuous
Galerkin (DG) makes mesh generation even more difficult

@ Adaptation generally requires robust mesh generation

Pursuing two approaches:

© Hanging node adaptation of quadrilateral and hexahedral meshes
— primarily for error indicator testing purposes

@ Cut-cell mesh generation — as a long term solution
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@ Mesh Generation and Adaptation
@ Hanging Node Refinement
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Hanging Node Refinement

@ Straightforward implementation
@ No change to DG solution space

@ No re-meshing or geometry callback is @
necessary with suitable initial curved

mesh
@ Available in 2D and 3D
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Quad/Hex Mesh Generation

@ An initial quad or hex mesh is required for hanging-node adaptation

@ For accurate high-order computation, need a curved boundary
representation

@ Approach
@ Leverage existing structured multiblock capability to generate high-order
geometry meshes
@ Goal: Provide initial meshes for testing adaptive indicators
@ Not a long-term solution: ultimately complement with cut-cell capability
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Linear Multiblock to Curved Meshes

@ Idea: generate a finer mesh than required and agglomerate elements
@ Fineness of linear mesh depends on the desired order, q

@ Non-corner linear nodes provide high-order geometry information

@ Implemented a conversion utility with automated agglomeration

.

9 g=1 elements 1 g=3 element
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Linear Multiblock to Curved Meshes (ctd.)

Have hook into ANSYS ICEM CFD

) \\K\\’ x\b\\\
Top DPW-W1 medium
g =1 and g = 3 meshes

Right: DLR-F6 with fairing,
coarse mesh, g = 3 mesh
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@ Mesh Generation and Adaptation

@ Simplex Cut Cells
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What Are Cut Cells?
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Boundary-conforming mesh Simplex cut-cell mesh

@ Cut-cell meshes do not conform to geometry boundary
@ Solution only exists inside the computational domain

@ Premise: metric-driven meshing of a simple convex volume (e.g.
box) is straightforward

@ Simplex cut cell meshes can be adapted anisotropically in any
direction
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Geometry Representation

2D: Cubic splines

@ Efficient treatment of curved boundaries; slope & curvature continuity

3D: Quadratic patches

@ Patch surface (x) given analytically: x = 3 ¢(X);X;, where X = [X, Y]
are patch ref space coords, and X = [x, Y, z] are global coords

@ Water-tight representation (no holes)

y

/ global space
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Intersection Problem

@ 2D: cubic-equation for spline/edge intersection
@ 3D: conic-section algorithm for patch/plane intersection
@ Multiply-cut elements treated as separate cut cells

@ Elements completely inside geometry removed from mesh structure

Tetrahedron

Cut edge

Embedded Quadratic-patch surface

Spline
geometry

Spline-edge
intersection
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Integration

@ High-order finite element method requires integration over:
@ Element boundaries (edges in 2D, faces in 3D)
o Element interiors (areas in 2D, volumes in 3D)
@ Regular triangles and tetrahedra can be mapped to reference
elements, where optimal integration rules exist

@ These rules do not (in general) apply to cut cells, where areas and
volumes are of irregular shape

v,
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Area Integration

Sampling points, xq, and weights, wq for
integrating arbitrary f(x) to a desired order:

/f(x)dx ~ 3" gt (xq)
r q

Sampling
PointsxCI

Project f(x) onto space of high-order basis functions, ¢j(x):

f(x) ~ ZFiq(x)

Choose (j(x) to allow for simple computation of [_¢(x)dx.

v
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Area Integration (ctd.)

Set (; = V - G; and use the divergence theorem:

/de:/V-Gidx:/ G; - nds
K K Ok

@ G; = a standard high-order basis (e.g. tensor product)
@ Line integrals over 0k using 1D edge formulas

@ Projection f(x) ~ ) _; Fi¢i(x) minimizes the least-squares error at
randomly-chosen sampling points, xq, inside the cut cell

@ QR factorization, ¢j(Xq) = Qq;R;i, and integration over « leads to
an expression for the quadrature weights:

/f(x)dx ~ ZFi/Q(x)dx _ Zf(xq)qu(RT)ji/Q(x)dx

Wq

>
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Example: 2D Flow Solution

g NAVAVAVAYV, ®M=05a=3
- é#iggz%kvu @ p = 2 interpolation J
[T\ SIS

C, comparison

Cut-cell mesh

—Cut Cell
—— Boundary Conforming

0 0.2 0.4 0.6 08 1
xlc

Boundary-conforming mesh
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Example: 3D Flow Solution

Cut-cell mesh:

Boundary-
conforming
mesh:
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Metric-Driven Adaptation

Idea: refine elements with high error; coarsen elements with low error J

Iteration 0

@ Use a priori output error estimate to
relate element error to size request:

r
€, ~ hi,

KT
V‘svfé%wfé!“}',{%;

'»4, SAVAVAN ) VaN
'f'AA};Af\'v,
@ Detect anisotropy by measuring

Iteration 2 p + 1st order derivatives of a scalar
quantity (Mach number)

@ Optimize mesh size to meet
requested tolerance and to satisfy
error equidistribution

@ Meshing: BAMG in 2D, TetGen in 3D

@ Left: NACA 0012, M = 0.5,
Re = 5000, p = 2 adapted on drag
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Example: Adaptation + Cut Cells

Automated

I I I
[C,, error = 201 counts C,, error = 102 counts

=M, =0.5, Re = 5000
- C, to within 1 count

H> H>
NACA 0012 geometry

1
C,, error = 17 counts

7N 1 T =
CD error = 0.3 counts C,, error = 3 counts

Salon

<

NURLEHATS,
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@ Results
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Cut-Cell Drag Adaptation in a Viscous Case

NACA 0012, M = 0.5, Re = 5000, o = 2°: drag adjoint adaptation
(Discontinuous Galerkin FEM discretization for all results) J

NIVINN

Initial boundary-conforming mesh Initial cut-cell mesh
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Viscous Case: Error Convergence

@ Degree of freedom (DOF) vs. drag output error forp = 1,2, 3
@ Requested tolerance is 0.1 drag counts (horizontal line)
@ Cut-cell and boundary-conforming results are similar

10° |

"
e

C, error (counts)
5

107"

107 3 n L
10 10” 10° 10°
DOF DOF

Boundary-conforming Cut-cell
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@ p = 1 meshes have approximately 50 times more elements
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Viscous Case: Indicator Comparison

® Hanging-node adaptation
o fixed fraction: 10%
@ g = 3 geometry representation © Drag adjoint
® Quad boundary conforming meshes Q Lift adjoint
@ p = 2 solution interpolation
@ Measured lift and drag

© Entropy adjoint
© Residual
@ Entropy

Initial mesh
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Viscous Case: Indicator Comparison (ctd.)

@ Degree of freedom (DOF) versus output error for p = 2 J

@ Entropy adjoint performance is comparable to output adjoints

|Drag coefficient error|

—&-Drag adjoint
—e-Lift adjoint
Entropy
-v Entropy adjoint =
——Residual 2
—6—Uniform refinement{ &
2
o
e
()
o
o
1E
=
10" 1215 1
Degrees of freedom
Drag Error
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Viscous Case: Indicator Comparison, Final Meshes

@ Entropy adjoint refinement similar to output adjoints

@ Leading edge, boundary layer, and initial wake targeted

Lift Adjoint Residual
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NACA Wing: Indicator Comparison

@ Hanging-node adaptation
@ fixed fraction: 10% © Drag adjoint
@ g = 3 geometry representation @ Lift adjoint
@ Hex boundary conforming meshes ) ety
@ p = 2 solution interpolation

p = < SOltion Interpotatio Q Residual
@ Measured lift and drag

© Entropy
Wing:

@ Unswept, untapered

@ Rounded wingtip

@ Aspect ratio = 10

Initial mesh
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NACA Wing: Indicator Comparison (ctd.)

@ Degree of freedom (DOF) versus output error for p = 2
@ Entropy adjoint performance again comparable to output adjoints
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NACA Wing: Indicator Comparison, Final Meshes

LA /

Lift Adjoint Residual
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NACA Wing: Indicator Comparison, Tip Vortex

Visualization of entropy isosurface and transverse cut contours J

Drag Adjoint Entropy Adjoint

Lift Adjoint Residual
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NACA Wing: Indicator Comparison, Tip Vortex

Entropy adjoint indicator targets tip vortex due to nonzero entropy residual J

Drag Adjoint

Residual

Entropy Adjoint

K. Fidkowski (UM) DLR 2009 May 4, 2009 50 /59



>
)
£
(@]
(0]
@ g
o .w
S S = g
© mmwvm <) S
x S W % £
LL =N = £ =)
— S o
D B ®©
(D] S o
O 3 g
— o ©
> o T
@) S
a 28
=

™ E ©

- d —
. Y— ®© =
> > =1 2
g ig |

E oS g
B o O =]
1 () ﬂv., (s
> o9
.W o O




Wing-Body: Adapted Meshes
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p = 1: 300,000 elements p = 2: 85,000 elements
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Wing-Body: Solution

@ Inviscid M, = 0.1 flow
@ Surface Mach number contours shown for a p = 2 solution
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Wing-Body Drag Comparison

Adaptation using drag adjoint withp = 0,1, 2 J
—A— p= OH
—a—p=1
——p=2Q
0 4 5 ‘6 7
10 10 10 10

DOF
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Ongoing Work

RANS turbulence modeling
@ Spalart-Allmaras (SA) model
@ Consistent discretization
@ Scalable solvers

Shock stabilization

@ Required to eliminate high-order
oscillations at discontinuities

@ Pursuing resolution-based
artificial viscosity [Persson &
Peraire, 2006]

Right: NACA 0012, M=0.5, o = 1.25°,
Re = 100k, p = 3. SA model
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Drag Prediction Workshop

DPW Il wing-alone test case

@ M=0.76
@ Re =108
@ a=0.5°
@p=2
P Pressure
@ 40,000 elements
@ hexahedral curved mesh ) =
from available multiblock
linear mesh X-momentum

Solution-based adaptation

SA working variable
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Concluding Remarks

@ Robust CFD analysis of complex configurations requires error
estimation and mesh adaptation

@ Output error estimation based on adjoint solutions is a practical
technique for accurately solving the hyperbolic problems common
in aerospace applications

@ The connection between entropy variables and adjoint solutions
leads to a novel indicator — the potential and limitations of which
are currently being investigated

@ Robust mesh adaptation is one of the largest barriers for the
effective implementation of these methods

@ Investigating high-order cut-cells as a long-term research area for
mesh generation
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