Is My CFD Mesh Adequate? A Quantitative Answer

Krzysztof J. Fidkowski

Gas Dynamics Research Colloqium Aerospace Engineering Department University of Michigan

January 26, 2011

- Outputs and Adjoints
- Output Error Estimation
- Mesh Adaptation
- 5 A Steady Result
- Output Strength St
- Conclusions and Ongoing Work

< A b

- 2 Outputs and Adjoints
- 3 Output Error Estimation
- 4 Mesh Adaptation
- 5 A Steady Result
- 6 Unsteady Extension and Result
- 7 Conclusions and Ongoing Work

∃ ► < ∃</p>

< 6 b

Meshes for Computational Fluid Dynamics

- Various types supporting different discretizations.
- Resolution (mesh size, order) affects accuracy of flowfield approximation.
- In unsteady simulations, time step size is part of the "mesh."

Cartesian cut-cells

Unstructured surface mesh

Multiblock volume mesh

K.J. Fidkowski (UM)

GDRC 2011

Current Practices in Mesh Generation

K.J. Fidkowski (UM)

GDRC 2011

January 26, 2011 5 / 38

AIAA Drag Prediction Workshop III (2006)

- Wing-body geometry, M = 0.75, $C_L = 0.5$, $Re = 5 \times 10^6$.
- Drag computed with various state of the art CFD codes.

1 drag count (.0001 C_D) \approx 4-8 passengers for a large transport aircraft

∃ ► 4 Ξ

Sources of Error

GDRC 2011

January 26, 2011

Sac

Verification: Control of Numerical Error

- Dominant source is discretization error
- Controlling error means answering
 - How much error is present? (error estimation)
 - How do I get rid of it? (mesh adaptation)
- Possible strategies:

	Error estimation?	Effective adaptation?
Resource exhaustion	No	No
Expert assessment	Maybe	Maybe
Convergence studies	Yes	No
Comparison to experiments	Yes	No
Feature-based adaptation	No	Maybe
Output-based methods	Yes	Yes

(4) (3) (4) (4) (4)

- Outputs and Adjoints
 - 3 Output Error Estimation
 - 4 Mesh Adaptation
 - 5 A Steady Result
 - 6 Unsteady Extension and Result
 - 7 Conclusions and Ongoing Work

Sac

< 6 b

The 14 at 14

Why Outputs?

Output = scalar quantity computed from the CFD solution.

- A CFD solution may contain millions of degrees of freedom.
- Often of interest are only a few scalars (forces, moments, etc.)
- It is mathematically easier to speak of "error in an output" than "error in a CFD solution."

Output error = difference between an output computed with the discrete system solution and that computed with the exact solution to the PDE.

Output error estimation

- Identifies all areas of the domain that are important for the accurate prediction of an output.
- Accounts for error propagation effects.
- Requires solution of an *adjoint equation*.

Consider N_H algebraic equations and an output,

 $\mathbf{R}_H(\mathbf{u}_H) = \mathbf{0}, \qquad J_H = J_H(\mathbf{u}_H)$

- $\mathbf{u}_H \in \mathbb{R}^{N_H}$ is the vector of unknowns
- $\mathbf{R}_{H} \in \mathbb{R}^{N_{H}}$ is the vector of residuals (LHS of the equations)
- $J_H(\mathbf{u}_H)$ is a *scalar* output of interest

Adjoint definition

The discrete output adjoint vector, $\psi_H \in \mathbb{R}^{N_H}$, is the sensitivity of J_H to an infinitesimal residual perturbation, $\delta \mathbf{R}_H \in \mathbb{R}^{N_H}$,

$$\delta J_H \equiv \boldsymbol{\psi}_H^T \delta \mathbf{R}_H$$

Discrete Adjoint Equation

The perturbed state, $\mathbf{u}_H + \delta \mathbf{u}_H$, must satisfy

$$\mathbf{R}_{H}(\mathbf{u}_{H}+\delta\mathbf{u}_{H})+\delta\mathbf{R}_{H}=0 \quad \Rightarrow \quad \frac{\partial\mathbf{R}_{H}}{\partial\mathbf{u}_{H}}\delta\mathbf{u}_{H}+\delta\mathbf{R}_{H}=0,$$

Linearizing the output we have,

 $\delta J_{H} = \underbrace{\frac{\partial J_{H}}{\partial \mathbf{u}_{H}}}_{\text{adjoint definition}} \delta \mathbf{u}_{H} = \underbrace{\psi_{H}^{\mathsf{T}} \delta \mathbf{R}_{H}}_{\text{adjoint definition}} = -\psi_{H}^{\mathsf{T}} \frac{\partial \mathbf{R}_{H}}{\partial \mathbf{u}_{H}} \delta \mathbf{u}_{H}$

Requiring the above to hold for arbitrary perturbations yields the linear *discrete adjoint equation*

$$\left(\frac{\partial \mathbf{R}_{H}}{\partial \mathbf{u}_{H}}\right)^{T} \psi_{H} + \left(\frac{\partial J_{H}}{\partial \mathbf{u}_{H}}\right)^{T} = \mathbf{0}$$

Continuous Adjoint

- If the following hold:
 - the algebraic equations came from a consistent discretization of a continuous PDE, and
 - the residual and output combination are adjoint consistent,

then the discrete vector ψ_H approximates the *continuous adjoint* ψ .

 ψ is a Green's function relating source residual perturbations in the PDE to output perturbations.

y-momentum pres. integral adjoint: supersonic

x-momentum lift adjoint, $M_{\infty} = 0.4$, $\alpha = 5^{\circ}$

K.J. Fidkowski (UM)

GDRC 2011

January 26, 2011 13 / 38

Sac

- The discrete adjoint, ψ_H , is obtained by solving a linear system.
- This system involves linearizations about the primal solution, **u**_{*H*}, which is generally obtained first.
- When the full Jacobian matrix, $\frac{\partial \mathbf{R}_{H}}{\partial \mathbf{u}_{H}}$, and an associated linear solver are available, the transpose linear solve is straightforward.
- When the Jacobian matrix is not stored, the discrete adjoint solve is more involved: all operations in the primal solve must be linearized, transposed, and applied in reverse order.
- In unsteady discretizations, the adjoint must be marched backward in time from the final to the initial state.

- 2 Outputs and Adjoints
- 3 Output Error Estimation
 - 4 Mesh Adaptation
- 5 A Steady Result
- 6 Unsteady Extension and Result
- 7 Conclusions and Ongoing Work

Sac

∃ ► < ∃</p>

< 6 b

- Consider two discretization spaces:
 - A **coarse** space with N_H degrees of freedom • A **fine** one with $N_h > N_H$ degrees of freedom

The fine discretization is usually obtained from the coarse one by refining the mesh or increasing the approximation order.

- The coarse state \mathbf{u}_H will generally not satisfy the fine-level equations: $\mathbf{R}_h(\mathbf{I}_h^H\mathbf{u}_H) \neq \mathbf{0}$, where \mathbf{I}_h^H is a coarse-to-fine prolongation operator.
- The fine-level adjoint, ψ_h , translates the residual perturbation $\delta \mathbf{R}_h \equiv -\mathbf{R}_h (\mathbf{I}_h^H \mathbf{u}_H)$ to an output perturbation:

$$\delta J \approx \underbrace{-(\boldsymbol{\psi}_h)^T \mathbf{R}_h \left(\mathbf{I}_h^H \mathbf{u}_H \right)}_{\mathbf{I}_h^H \mathbf{I}_h^H \mathbf{I}$$

adjoint-weighted residual

Approximation sign is present because $\delta \mathbf{R}_h$ is not infinitesimal.

イロト イポト イヨト イヨト

Adjoint-Weighted Residual Example

NACA 0012, $M_{\infty} = 0.5$, $\alpha = 5^{o}$

Interested in lift error in a p = 1 (second-order accurate) finite element solution. Using p = 2 for the fine space in error estimation.

p = 1 Mach contours

p = 2 Mach contours

- Adjoint-based error estimate: $-(\psi_h)^T \mathbf{R}_h (\mathbf{I}_h^H \mathbf{u}_H) = -.001097$
- Actual difference: $\delta J = -.001099$

K.J. Fidkowski (UM)

- Introduction and Motivation
- 2 Outputs and Adjoints
- 3 Output Error Estimation
- Mesh Adaptation
- 5 A Steady Result
- 6 Unsteady Extension and Result
- 7 Conclusions and Ongoing Work

∃ ► < ∃</p>

< 17 ▶

GDRC 2011

4 A b

Error Localization

- Goal: need to identify problematic areas of the mesh
- The output error estimate,

$$\delta \boldsymbol{J} \approx - (\boldsymbol{\psi}_h)^T \, \mathbf{R}_h \left(\mathbf{I}_h^H \mathbf{u}_H \right)$$

is a sum over mesh elements (for finite volume/element methods)

Error indicator on element κ

$$\epsilon_{\kappa} = \left| - \left(\boldsymbol{\psi}_{h,k}
ight)^{T} \mathbf{R}_{h,k} \left(\mathbf{I}_{h}^{H} \mathbf{u}_{H}
ight) \right|$$

Lift error indicator on a p = 1 DG solution

∃ ► 4 Ξ

- h-adaptation: only triangulation is varied
- p-adaptation: only approximation order is varied
- Inp-adaptation: both triangulation and approximation order are varied

Given an error indicator, how should the mesh be adapted?

- Refine some/all elements?
- Incorporate anisotropy (stretching)?
- How to handle elements on the geometry?

Since mesh generation is difficult in the first place, adaptation needs to be automated to enable multiple iterations.

3 > 4 3

• • • • • • • • • •

Meshing and Adaptation Strategies

Metric-based anisotropic mesh regeneration (e.g. BAMG software)

Riemannian ellipse

Edge Swap Edge Split Edge Collapse Local mesh operators, and direct optimization

Cut-cell meshes: Cartesian and simplex イロト イポト イヨト イヨト

K.J. Fidkowski (UM)

GDRC 2011

January 26, 2011

590

- 1 Introduction and Motivation
- 2 Outputs and Adjoints
- Output Error Estimation
- 4 Mesh Adaptation
- 5 A Steady Result
- 6 Unsteady Extension and Result
- 7 Conclusions and Ongoing Work

∃ ► < ∃</p>

< 6 b

NACA Wing, $M = 0.4, \alpha = 3^{o}$

- Hanging-node adaptation
- Cubic curved geometry representation
- Hexahedral meshes
- *p* = 2 (third order) DG solution approximation
- Interested in lift and drag

Initial mesh

Indicators

- Drag and lift adjoints
- 2 Entropy adjoint
- 8 Residual
- Entropy

Mach number contours

K.J. Fidkowski (UM)

GDRC 2011

January 26, 2011 24 / 38

NACA Wing, $M = 0.4, \alpha = 3^{\circ}$

- Degree of freedom (DOF) versus output error for p = 2
- Entropy adjoint performance again comparable to output adjoints

K.J. Fidkowski (UM)

GDRC 2011

January 26, 2011 25 / 38

NACA Wing, M = 0.4, $\alpha = 3^{\circ}$, Final Meshes

Residual

K.J. Fidkowski (UM)

GDRC 2011

э

DQC

NACA Wing, M = 0.4, $\alpha = 3^{o}$, Tip Vortex

Visualization of entropy isosurface and transverse cut contours

- 1 Introduction and Motivation
- 2 Outputs and Adjoints
- Output Error Estimation
- 4 Mesh Adaptation
- 5 A Steady Result
- Oursteady Extension and Result
 - Conclusions and Ongoing Work

∃ ► < ∃</p>

< 6 b

Unsteady Extension

- The error estimation equations hold for unsteady problems.
- The adjoint is more expensive for nonlinear problems:
 - Adjoint solve proceeds backwards in time.
 - State vector is required at each time for linearization.
 - Must store or recompute state.
- Adaptation is trickier with the additional dimension of time.
- Current approach: finite elements in space and time.

$$\mathbf{u}_{H}(\mathbf{x},t) = \sum_{n} \sum_{j} \mathbf{u}_{H,j}^{n} \phi_{H,j}(\mathbf{x}) \varphi_{H}^{n}(t)$$

- $\phi_{H,j}(\mathbf{x}) = j^{\text{th}}$ spatial basis function
- $\varphi_H^n(t) = n^{\text{th}}$ temporal basis function
- Basis functions are discontinuous in space and time (DG).

29/38

Discretization: Space-Time Mesh

- Time is discretized in slabs (all elements advance the same Δt)
- Each space-time element is prismatic (tensor product: $\mathcal{T}_e^H \otimes \mathcal{I}_k^H$)
- The spatial mesh is assumed to be invariant in time

Unsteady Adaptive Solution

The adaptation consists of hanging-node refinement in space and slab bisection in time.

K.J.	Fidko	wski	(UM)
			(,

< ロ > < 同 > < 回 > < 回 >

Impulsively-Started Airfoil in Viscous Flow

Governing equations (Navier-Stokes)

$$\frac{\partial \mathbf{u}}{\partial t} + \frac{\partial}{\partial x_i} \left[\mathbf{F}_i^{\prime}(\mathbf{u}) - \mathbf{F}_i^{V}(\mathbf{u}, \nabla \mathbf{u}) \right] = \mathbf{0}$$

- $\mathbf{u} = [\rho, \rho \boldsymbol{u}, \rho \boldsymbol{v}, \rho \boldsymbol{E}]^T$
- $\mathbf{F}'_i(\mathbf{u})$ is the inviscid flux
- $\mathbf{F}_{i}^{V}(\mathbf{u}, \nabla \mathbf{u})$ is the viscous flux

Initial and boundary conditions

- At t = 0 the velocity is blended smoothly to zero in a circular disk around the airfoil
- The freestream conditions are M_∞ = 0.25, α = 8°, Re = 5000

Initial condition and mesh

Impulsively-Started Airfoil: Output Convergence

The output of interest is the lift coefficient integral from t = 9 to t = 10

Time integral output definition. A vortex-shedding pattern has been established by the time of the output measurement.

Convergence of output using various adaptive indicators. Shown on output-based results are:

- Error bars at $\pm \delta J$ (actual error est.)
- Whiskers at $\pm \epsilon$ (conservative error est.)

GDRC 2011

Sac

Impulsively-Started Airfoil: Time History Convergence

meshes with similar degrees of freedom. Values shown only at end of time slabs.

various adaptive indicators

Output-based adaptation yields not only an accurate scalar output, but also an accurate lift coefficient time history.

Impulsively-Started Airfoil: Adapted Spatial Meshes

- Meshes shown at iterations with similar total degrees of freedom.
- Spatially-marginalized output error indicator is shown on the elements of the output-adapted mesh.

< ロ > < 同 > < 回 > < 回 >

- Output error indicator yields a fairly-uniform temporal refinement.
- Approximation error focuses on the initial time (dynamics of the IC) and the latter 1/3 of the time, when the shed vortices develop.
- Residual creates a mostly-uniform temporal mesh as it tracks acoustic waves.

< 6 b

- 1 Introduction and Motivation
- 2 Outputs and Adjoints
- 3 Output Error Estimation
- 4 Mesh Adaptation
- 5 A Steady Result
- 6 Unsteady Extension and Result
- Conclusions and Ongoing Work

∃ ► < ∃</p>

< 6 b

Conclusions

Conclusions

- An adequate CFD mesh is one that yields a sufficiently-low discretization error.
- The effect of discretization error on outputs can be quantified.
- Added cost: the solution of an adjoint problem.
- Benefit: error estimates and efficient meshes.
- Ideas apply to both steady and unsteady CFD problems.

What lies ahead

- Unsteady problems:
 - Dynamically-refined spatial meshes and grid motion
 - Forward solution checkpointing
 - Adjoint stability
- Entropy adjoint as a cheaper alternative
- Error bounds instead of estimates

э.

イロト イポト イヨト イヨト