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Meshes for Computational Fluid Dynamics

Various types supporting
different discretizations.

Resolution (mesh size, order)
affects accuracy of flowfield
approximation.

In unsteady simulations, time
step size is part of the “mesh.”

Cartesian cut-cells

Unstructured surface mesh

Multiblock volume mesh
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Current Practices in Mesh Generation

Unstructured meshes can be
generated with less user
intervention (still not fully
automated for complex
geometries).

Multi-block meshes are of
highest quality for high Re
viscous calculations.
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Resulting Errors

AIAA Drag Prediction Workshop III (2006)

Wing-body geometry, M = 0.75,CL = 0.5,Re = 5× 106.
Drag computed with various state of the art CFD codes.

0 2 4 6 8 10 12 14 16 18 20 22
0.024

0.026

0.028

0.03

0.032

0.034

Solution Index

C
D

, 
T

O
T

 

 

Multiblock

Overset

Unstructured

Median

1 Std Dev

Differences in:
Physical
models
Discretization
Mesh size
distribution

1 drag count (.0001CD) ≈ 4-8 passengers for a large transport aircraft
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Sources of Error

CFD and experiment

Comparison of

Verification

Validation

Reality

Governing equations

System of equations

discretization errors

observation errors

noise, calibration ...

CFD solution/data

Experimental
 data

convergence errors

modeling errors

compounding of errors
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Verification: Control of Numerical Error

Dominant source is discretization error
Controlling error means answering

1 How much error is present? (error estimation)
2 How do I get rid of it? (mesh adaptation)

Possible strategies:

Resource exhaustion

Expert assessment

Convergence studies

Comparison to experiments

Feature−based adaptation

Output−based methods Yes Yes

Effective adaptation?

Maybe

Maybe

No

No

NoNo

No

Maybe

Yes

Yes

Error estimation?

K.J. Fidkowski (UM) GDRC 2011 January 26, 2011 8 / 38



Outline

1 Introduction and Motivation

2 Outputs and Adjoints

3 Output Error Estimation

4 Mesh Adaptation

5 A Steady Result

6 Unsteady Extension and Result

7 Conclusions and Ongoing Work

K.J. Fidkowski (UM) GDRC 2011 January 26, 2011 9 / 38



Why Outputs?

Output = scalar quantity computed from the CFD solution.

A CFD solution may contain millions of degrees of freedom.

Often of interest are only a few scalars (forces, moments, etc.)

It is mathematically easier to speak of “error in an output” than “error in a
CFD solution.”

Output error = difference between an output computed with the discrete
system solution and that computed with the exact solution to the PDE.

Output error estimation

Identifies all areas of the domain that are important for the accurate
prediction of an output.

Accounts for error propagation effects.

Requires solution of an adjoint equation.
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Discrete Adjoint Definition

Consider NH algebraic equations and an output,

RH(uH) = 0, JH = JH(uH)

uH ∈ RNH is the vector of unknowns
RH ∈ RNH is the vector of residuals (LHS of the equations)
JH(uH) is a scalar output of interest

Adjoint definition

The discrete output adjoint vector, ψH ∈ RNH , is the sensitivity of JH to
an infinitesimal residual perturbation, δRH ∈ RNH ,

δJH ≡ ψT
HδRH

K.J. Fidkowski (UM) GDRC 2011 January 26, 2011 11 / 38



Discrete Adjoint Equation

The perturbed state, uH + δuH , must satisfy

RH(uH + δuH) + δRH = 0 ⇒ ∂RH

∂uH
δuH + δRH = 0,

Linearizing the output we have,

δJH =
∂JH

∂uH
δuH =

linearized equations︷ ︸︸ ︷
ψT

HδRH︸ ︷︷ ︸
adjoint definition

= −ψT
H
∂RH

∂uH
δuH

Requiring the above to hold for arbitrary perturbations yields the linear
discrete adjoint equation(

∂RH

∂uH

)T

ψH +

(
∂JH

∂uH

)T

= 0
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Continuous Adjoint

If the following hold:
1 the algebraic equations came from a consistent discretization of a

continuous PDE, and
2 the residual and output combination are adjoint consistent,

then the discrete vector ψH approximates the continuous adjoint ψ.

ψ is a Green’s function relating source residual perturbations in the PDE
to output perturbations.

y -momentum pres. integral adjoint: supersonic
x-momentum lift adjoint, M∞ = 0.4, α = 5o
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Adjoint Implementation

The discrete adjoint, ψH , is obtained by solving a linear system.

This system involves linearizations about the primal solution, uH ,
which is generally obtained first.

When the full Jacobian matrix, ∂RH
∂uH

, and an associated linear
solver are available, the transpose linear solve is straightforward.

When the Jacobian matrix is not stored, the discrete adjoint solve
is more involved: all operations in the primal solve must be
linearized, transposed, and applied in reverse order.

In unsteady discretizations, the adjoint must be marched
backward in time from the final to the initial state.
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Output Error Estimation

Consider two discretization spaces:

1 A coarse space with NH degrees of freedom
2 A fine one with Nh > NH degrees of freedom

The fine discretization is usually obtained from the coarse one by
refining the mesh or increasing the approximation order.

The coarse state uH will generally not satisfy the fine-level equations:
Rh(IHh uH) 6= 0, where IHh is a coarse-to-fine prolongation operator.

The fine-level adjoint, ψh, translates the residual perturbation
δRh ≡ −Rh(IHh uH) to an output perturbation:

δJ ≈ − (ψh)T Rh
(
IHh uH

)︸ ︷︷ ︸
adjoint-weighted residual

Approximation sign is present because δRh is not infinitesimal.
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Adjoint-Weighted Residual Example

NACA 0012, M∞ = 0.5, α = 5o

Interested in lift error in a p = 1 (second-order accurate) finite element
solution. Using p = 2 for the fine space in error estimation.

p = 1 Mach contours p = 2 Mach contours

Adjoint-based error estimate: − (ψh)T Rh
(
IHh uH

)
= −.001097

Actual difference: δJ = −.001099
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Adaptive Solution Flowchart

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?
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Error Localization

Goal: need to identify problematic areas of the mesh

The output error estimate,

δJ ≈ − (ψh)T Rh
(
IHh uH

)
is a sum over mesh elements (for finite volume/element methods)

Error indicator on element κ

εκ =
∣∣∣− (ψh,k

)T Rh,k
(
IHh uH

) ∣∣∣
Lift error indicator on a p = 1 DG solution

Refinement in areas where εκH is large will reduce the residual there and
hence improve the output accuracy.
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Adaptation Mechanics

1 h-adaptation: only triangulation is varied

2 p-adaptation: only approximation order is varied

3 hp-adaptation: both triangulation and approximation order are varied

Given an error indicator, how should the mesh be adapted?

Refine some/all elements?

Incorporate anisotropy (stretching)?

How to handle elements on the geometry?

Since mesh generation is difficult in the first place, adaptation needs to be
automated to enable multiple iterations.
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Meshing and Adaptation Strategies

Metric-based anisotropic mesh regeneration (e.g. BAMG software)

e
2

h
2

e
1

h
1

Riemannian ellipse

Edge Swap Edge Split Edge Collapse

Local mesh operators, and direct optimization

Cut Cell

Geometry
Boundary

Cut-cell meshes: Cartesian and simplex
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NACA Wing, M = 0.4, α = 3o

Hanging-node adaptation
Cubic curved geometry
representation
Hexahedral meshes
p = 2 (third order) DG
solution approximation
Interested in lift and drag

Initial mesh

Indicators
1 Drag and lift adjoints

2 Entropy adjoint

3 Residual

4 Entropy

Mach number contours
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NACA Wing, M = 0.4, α = 3o

Degree of freedom (DOF) versus output error for p = 2
Entropy adjoint performance again comparable to output adjoints
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NACA Wing, M = 0.4, α = 3o, Final Meshes

Drag Adjoint

Lift Adjoint

Entropy Adjoint

Residual

K.J. Fidkowski (UM) GDRC 2011 January 26, 2011 26 / 38



NACA Wing, M = 0.4, α = 3o, Tip Vortex

Visualization of entropy isosurface and transverse cut contours

Drag Adjoint

Lift Adjoint

Entropy Adjoint

Residual
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Unsteady Extension

The error estimation equations hold for unsteady problems.

The adjoint is more expensive for nonlinear problems:

Adjoint solve proceeds backwards in time.
State vector is required at each time for linearization.
Must store or recompute state.

Adaptation is trickier with the additional dimension of time.

Current approach: finite elements in space and time.

space

tim
e

ϕn
H

φH,j

uH(x, t) =
∑

n

∑
j

un
H,j φH,j (x)ϕn

H(t)

φH,j (x) = j th spatial basis function

ϕn
H(t) = nth temporal basis function

Basis functions are discontinuous in
space and time (DG).
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Discretization: Space-Time Mesh

Time is discretized in slabs (all elements advance the same ∆t)

Each space-time element is prismatic (tensor product: T H
e ⊗ IH

k )

The spatial mesh is assumed to be invariant in time

−
+
−
+

time slab IH,k

element TH,e

x

y

t

tk
tk−1Ωtime
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Unsteady Adaptive Solution

Solution steps

yes
Done

no

Initial space−time mesh and error tolerance

Solve primal by marching forward in time

indicators in a loop over time slabs backwards in time

Error tolerance met?

Identify elements and time slabs for refinement

Adapt space-time mesh

Solve adjoint, estimate the output error, and localize to adaptive

The adaptation consists of hanging-node refinement in space and slab
bisection in time.
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Impulsively-Started Airfoil in Viscous Flow

Governing equations (Navier-Stokes)
∂u
∂t

+
∂

∂xi

[
FI

i (u)− FV
i (u,∇u)

]
= 0

u = [ρ, ρu, ρv , ρE ]T

FI
i (u) is the inviscid flux

FV
i (u,∇u) is the viscous flux

Initial and boundary conditions
At t = 0 the velocity is blended
smoothly to zero in a circular disk
around the airfoil
The freestream conditions are
M∞ = 0.25, α = 8◦, Re = 5000

Initial condition and mesh

Entropy contours at t = 10
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Impulsively-Started Airfoil: Output Convergence

The output of interest is the lift coefficient integral from t = 9 to t = 10
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Time integral output definition.
A vortex-shedding pattern has been
established by the time of the output

measurement.

10
5

10
6

10
7

10
8

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

degrees of freedom
O

u
tp

u
t

 

 

Actual

Output error

Approximation error

Residual

Uniform adaptation

Convergence of output using various adaptive
indicators. Shown on output-based results are:

Error bars at ±δJ (actual error est.)

Whiskers at ±ε (conservative error est.)
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Impulsively-Started Airfoil: Time History Convergence
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Output error, DOF=7.56E+06

Approximation error, DOF=9.08E+06

Residual, DOF=1.51E+07

Uniform adaptation, DOF=3.76E+07

Actual

Lift coefficient time histories for adapted
meshes with similar degrees of freedom.
Values shown only at end of time slabs.
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Output-based adaptation yields not only an accurate scalar output, but
also an accurate lift coefficient time history.
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Impulsively-Started Airfoil: Adapted Spatial Meshes

Meshes shown at iterations with similar total degrees of freedom.
Spatially-marginalized output error indicator is shown on the
elements of the output-adapted mesh.

Adapted on output error (5956
elements)

Adapted on approximation
error (4585 elements)

Adapted on residual (7929
elements)
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Impulsively-Started Airfoil: Adapted Temporal Meshes

0 1 2 3 4 5 6 7 8 9 10

Output error: 141 time slabs

Approximation error: 420 time slabs

Residual: 211 time slabs

Time

0

0.5

1
x 10

−3

|Temporally−marginalized output error| Output error indicator
yields a fairly-uniform
temporal refinement.

Approximation error
focuses on the initial
time (dynamics of the
IC) and the latter 1/3 of
the time, when the shed
vortices develop.

Residual creates a
mostly-uniform temporal
mesh as it tracks
acoustic waves.
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Conclusions

Conclusions
An adequate CFD mesh is one that yields a sufficiently-low
discretization error.
The effect of discretization error on outputs can be quantified.
Added cost: the solution of an adjoint problem.
Benefit: error estimates and efficient meshes.
Ideas apply to both steady and unsteady CFD problems.

What lies ahead
Unsteady problems:

Dynamically-refined spatial meshes and grid motion
Forward solution checkpointing
Adjoint stability

Entropy adjoint as a cheaper alternative
Error bounds instead of estimates
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