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Introduction

Complex CFD simulations made possible by
Increasing computational power
Improvements in numerical algorithms

New liability: ensuring accuracy of computations
Management by expert practitioners is not feasible for
increasingly-complex flow fields
Reliance on best-practice guidelines is an open-loop solution:
numerical error is unchecked for novel configurations
Output calculations are not yet sufficiently robust, even on
relatively standard simulations
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Errors in simulations come from various sources

CFD and experiment

Comparison of

Verification

Validation

Calibration

Reality

Governing equations

System of equations

discretization errors

observation errors

noise, calibration ...

CFD solution/data

Experimental
 data

convergence errors

modeling errors

compounding of errors
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Verification is important

AIAA Drag Prediction Workshop III (2006)
Wing-body geometry, M = 0.75,CL = 0.5,Re = 5× 106

Drag computed with various state of the art CFD codes
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Numerical errors have come down, at a large cost
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Uniform grid refinement may be misleading

DPW III wing-alone case: M∞ = 0.76,Re = 5× 106

Two mesh sequences generated using best-practice
mesh-generation guidelines [Mavriplis, 2007]

Run on same code (turbulence model, solver, etc)
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Verification = control of numerical error

Dominant source is discretization error (i.e. lack of
appropriate mesh resolution)
Controlling error means answering

1 How much error is present? (error estimation)
2 How can this error be reduced? (mesh adaptation)

Possible strategies:

Resource exhaustion

Expert assessment

Convergence studies

Comparison to experiments

Feature−based adaptation

Output−based methods Yes Yes

Effective adaptation?

Maybe

Maybe

No

No

NoNo

No

Maybe

Yes

Yes

Error estimation?
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Improving CFD robustness

Error estimation
Error estimates on outputs of interest are necessary for
confidence in CFD results
Mathematical theory exists for obtaining such estimates
Recent works demonstrate the success of this theory for
aerospace applications

Mesh adaptation
Error estimation alone is not enough
Engineering accuracy for complex aerospace simulations
demands mesh adaptation to control numerical error
Automated adaptation improves robustness by closing the
loop in CFD analysis

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 10/110



A typical output-adaptive result

adaptive iterations
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Why not just adapt “obvious” regions?

Fishtail shock in M∞ = 0.95 inviscid flow over a NACA 0012 airfoil
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The role of high order

High-order methods: errors converge faster than 2nd-order
Typically choose high-order methods for “smooth” problems,
where we expect to see convergence plots that look like:

log(error)

p = 3

p = 1

log(dof)

p = 2

initial mesh

one uniform ref.

two uniform refs.
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Can aero applications benefit from high order?

Question considered by recent high-order CFD workshops
Aerospace applications usually have both smooth and
singular features (shocks, trailing edges)
Singularities can limit observed rates

Mach numbers (0–0.7), Euler flow
over a NACA 0012 airfoil
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High-order in mesh adaptation

Adaptation can isolate singularities with small elements
In many high-order methods, local p-enrichment is possible
High-order just becomes another refinement tool for efficiently
improving accuracy

log(dof)

log(error)

two adapt iters.
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adaptive hp

elements
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Conservation equations

PDE:
∂tu + ∂iHi(u,∇u) = 0

i : 1 ≤ i ≤ d indexes the spatial dimension d (implied sum)
u ∈ Rs is the state vector
Hi ∈ Rs is the ith component of the total flux

Hi = Fi(u)︸ ︷︷ ︸
inviscid flux

+ Gi(u,∇u)︸ ︷︷ ︸
viscous flux

The viscous flux is

Gi(u,∇u) = −Kij(u) ∂ju
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Solution approximation

Polynomials of order pe on each element:

uh(~x) ≈
Ne∑

e=1

Npe∑
n=1

Uenφen(~x)

element edomain Ω

Ωe

Ne = # of elements

Npe = # of basis fcns on element e

φen(~x) = nth basis fcn of order pe on e

pe = approximation order on element e

Uen = vector of s coefficients on nth

basis function on element e
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Weak form

Multiply the PDE by test functions vh ∈ Vh to get

Rh(uh, vh) = 0, ∀vh ∈ Vh

Integrating by parts and using BR2, we obtain

Rh(uh, vh|Ωe) =

∫
Ωe

vT
h∂tuh dΩ−

∫
Ωe

∂ivT
h Hi dΩ

+

∫
∂Ωe

v+T
h

(
F̂ + Ĝ

)
ds︸ ︷︷ ︸

interface/boundary flux

+

∫
∂Ωe

∂iv+T
h K̂ij

(
u+

h − ûh
)

ds︸ ︷︷ ︸
adjoint-consistency term
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Fluxes

(·)+ = quantity from element interior
(·)− = quantity from neighbor element
(·)b = quantity defined on a boundary

(̂·) = an average quantity on a face
BR2: unique state on an interior face is ûh = (u+

h + u−h )/2

u+
h

u−h

~n

ub
h

∂Ωe\∂Ω

Ωe

∂Ωe ∪ ∂Ω

F̂ = F̂(u+
h ,u

−
h ,~n)

Ĝ = Ĝ(u+
h ,u

−
h ,∇u+

h ,∇u−h ,~n)

F̂b = F̂b(u+
h ,BC,~n)

Ĝb = Ĝb(ub
h,∇u+

h ,BC,~n)
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Discrete system

Discrete residual on element e for nth test function,

Ren ≡ {Rh(uh, φener)}r=1...s ∈ Rs

We lump all residuals and states into single vectors (size N),

R(U) = 0

state approx.
coefficients for

basis function n
element e andU = element e

Ue1
Ue2

UeNpe

Uen basis fcn n ...
U2

Us

U1

numbers needed to describe s order p
polynomials inside element e
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Verification using a manufactured solution

How do we know if we coded the discretization correctly?
Analytical solutions are scarce, especially for RANS
Let’s “make up” a solution,

u(~x) = uMS(~x) = chosen by the user

Substituting uMS(~x) into the PDE gives a remainder of

sMS ≡ ∂tuMS + ∂iHi(uMS,∇uMS)

Using this remainder as a negative source term gives a PDE
that uMS does satisfy,

∂tuMS + ∂iHi(uMS,∇uMS)− sMS = 0
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Manufactured solution results for RANS

Pick a sinusoidal variation, ρMS = aρ + bρ sin(cρx + dρy), and
similarly for the other state components.
Compute and discretize the source term, sMS

Does solution on progressively-finer meshes approach uMS?
Check with L2 norm:

Manufactured solution, ρ
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Local sensitivities

Suppose Nµ parameters affect our PDE, but we only have
one scalar output, J(U):

µ︸︷︷︸
inputs ∈ RNµ

→ R(U,µ) = 0︸ ︷︷ ︸
N equations

→ U︸︷︷︸
state ∈ RN

→ J(U)︸︷︷︸
output (scalar)

We are interested in how J changes with µ,

dJ
dµ
∈ R1×Nµ = Nµ sensitivities

Brute force approach: perturb each entry in µ individually,
re-solve the PDE, and measure the perturbation in the output

This is inefficient for large Nµ
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The discrete adjoint

We can efficiently compute sensitivities using a discrete
adjoint vector, Ψ ∈ RN ,

dJ
dµ

= ΨT ∂R
∂µ

Each entry in Ψ is the sensitivity of J to residual source
perturbations in the corresponding entry in R

∂R
∂µ

solver
(expensive)

∂J
∂U

Rµ U J

δJ = ΨTδR
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The discrete adjoint equation

Consider a small perturbation δR to the residual
The resulting (linearized) state perturbation, δU satisfies

∂R
∂U

δU + δR = 0

Also linearizing the output we have,

δJ =
∂J
∂U

δU =

linearized equations︷ ︸︸ ︷
ΨTδR︸ ︷︷ ︸

adjoint definition

= −ΨT ∂R
∂U

δU

Requiring the above to hold for arbitrary perturbations yields
the linear discrete adjoint equation(

∂R
∂U

)T

Ψ +

(
∂J
∂U

)T

= 0
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Adjoints in aerodynamics

Consider flow over an airfoil:

Residual: Re =
∫
∂Ωe

~F ·~n

J = Lift
Output

µ =

Inputs
α
M∞
Re

element e

~n

State: Ue = [ρ, ρ~v, ρE]e
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Output sensitivity to residuals: the adjoint

The lift adjoint Ψ is the sensitivity of lift to residual sources.

We have a solution U when R = 0

element e

Lift= J(U)

state U

Lift= J(U)

U

We have a solution U when R = 0

element e

What if we add a residual source, δRe?

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

We have a solution U when R = 0

resolving for the state ...

δRe

Lift= J(U) + δJ

element e

U + δUWhat if we add a residual source, δRe?

resolving for the state ...

We have a solution U when R = 0

ΨeδRe

δJ = ΨT
e δRe
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Sample steady adjoint solution

output = pressure integral

green = zero adjoint

M = 1.5 flow

diamond airfoil

(showing y−mom component)
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Another steady adjoint solution

RAE 2822, M∞ = 0.5, Re = 105, α = 1◦

x-momentum primal state cons. of x-mom drag adjoint

Adjoint shares similar qualitative features with primal
Note wake “reversal” in adjoint solution
The discrete adjoint solution approximates the continuous
adjoint when the discretization is adjoint consistent
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Adjoint verification

We can verify the discrete adjoint with a sensitivity analysis,
dJ
dα

= ΨT ∂R
∂α

+
∂J
∂α

Compare to finite-difference sensitivity calculation
Example: NACA 0012 airfoil in Re = 5000 flow

Mach number contours
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Adjoint implementation

The discrete adjoint, Ψ, is obtained by solving a linear system
This system involves linearizations about the primal solution,
U, which is generally obtained first
When the full Jacobian matrix, ∂R

∂u , and an associated linear
solver are available, the transpose linear solve is
straightforward
When the Jacobian matrix is not stored, the discrete adjoint
solve is more involved: all operations in the primal solve must
be linearized, transposed, and applied in reverse order
In unsteady discretizations, the adjoint must be marched
backward in time from the final to the initial state
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Output error estimation

We want: δJ = JH(UH)− J(U)

This is the difference between J computed with the discrete
system solution, UH, and J computed with the exact solution, U

We’ll settle for: δJ = JH(UH)− Jh(Uh)

This is the difference in J relative to a finer discretization (h)

coarse space: → RH(UH) = 0︸ ︷︷ ︸
NH equations

→ UH︸︷︷︸
state ∈ RNH

→ JH(UH)︸ ︷︷ ︸
output (scalar)

fine space: → Rh(Uh) = 0︸ ︷︷ ︸
Nh equations

→ Uh︸︷︷︸
state ∈ RNh

→ Jh(Uh)︸ ︷︷ ︸
output (scalar)
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Fine-space injection

The fine space can arise from h or p refinement
Define an injection of the coarse state into the fine space

injection: IHh

Coarse space Fine space

UH
UH

h

UH
h will generally not satisfy the fine-space equations,

Rh(UH
h ) 6= 0
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Fine-space residuals

A finer space (e.g. order enrichment) can uncover residuals
in a converged solution
Example: NACA 0012 at α = 2◦ in Re = 5000, M∞ = 0.5 flow

Coarse space state, UH

Injected state, UH
h

pH = 1

ph = 2

Coarse space residual, RH(UH)

Fine space residual, Rh(UH
h )

Zero as expected

Nonzero: new info

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 36/110



Fine-space residuals
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The adjoint-weighted residual

UH
h solves a perturbed fine-space problem

find U′h such that: Rh(U′h)−Rh(UH
h )︸ ︷︷ ︸

δRh

= 0 ⇒ answer: U′h = UH
h

The fine-space adjoint, Ψh, then tells us to expect an output
perturbation of

Jh(UH
h )− Jh(Uh)︸ ︷︷ ︸
≈ δJ

= ΨT
h δRh = −ΨT

h Rh(UH
h )

This equation assumes small perturbations (e.g. if nonlinear)
In summary, we have an adjoint-weighted residual error
estimate,

δJ ≈ −ΨT
h Rh(UH

h )
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Adjoint-weighted residual example

Fine space residual, Rh(UH
h )

Fine space adjoint, Ψh

Error indicator, εe = |ΨT
h,eRh,e(UH

h )|

Output error: δJ ≈ −ΨT
h Rh(UH

h )

Idea: adapt where εe is high, to
reduce the residual there
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Two more definitions

Corrected output

Jcorrected
H = JH − δJ

Should converge faster than JH

Remaining error = error left in corrected output

Error effectivity

ηH =
JH(UH)− Jh(Uh)

JH(UH)− J

J = exact output
We want ηH close to 1
Effectivity is affected by choice of fine space
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Error convergence tests

Expect

error = Chk, as h→ 0

k = rate of convergence
h = measure of element size (precise value not important)
For 2D uniform-refinement studies, can use h =

√
1/Ne

Taking a log of the above equation,

log(error) = log C + k log

(√
1

Ne

)

We can measure k by plotting log(error) versus log(h)
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Drag error in inviscid flow over a bump

Mach contours

10
−1.9

10
−1.6

10
−1.3

10
−8

10
−6

10
−4

10
−2

3

4

h = (number of elements)
−1/2

D
ra

g
 c

o
e

ff
ic

ie
n

t 
e

rr
o

r

 

 

error in output

error in corrected output

10
−1.9

10
−1.6

10
−1.3

0.95

0.96

0.97

0.98

0.99

1

1.01

h = (number of elements)
−1/2

E
rr

o
r 

e
ff

e
c
ti
v
it
y

 

 

Ideal=1

relative to exact error

relative to fine−space error

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 41/110



Drag error in viscous flow over an airfoil

Mach contours
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Error estimation summary

1 Solve the coarse-discretization forward and adjoint problems:
UH and ΨH

2 Pick a fine discretization “h” (mesh refinement or order
enrichment)

3 Calculate or approximate Ψh = adjoint on the fine space

4 Project UH onto the fine discretization and calculate the
residual Rh(UH

h )

5 Weight the fine-space residual with the fine-space adjoint to
obtain the output error estimate

6 The computed output error δJ is an estimate of the true error,
not a bound
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Mesh adaptation

Flow and adjoint solution

Done

Mesh adaptation

Initial coarse mesh & error tolerance

Output error estimate

Error localization

Tolerance

met?
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Error localization

Recall that the adjoint-weighted residual expression for the
output error involves a sum over elements (e)

JH(UH)− Jh(Uh) ≈ −ΨT
h Rh(UH

h ) = −
∑

e

ΨT
heRhe(UH

h )

The absolute-value of each element’s contribution to the error
is the error indicator on that element

εe ≡
∣∣ΨT

heRhe(UH
h )
∣∣

Right : plot of error indicator for a
viscous DG simulation, pH = 1, ph = 2
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Output-based mesh adaptation

Motivating ideas
The error indicator (εe) identifies elements with large
adjoint-weighted residuals
Locally refining a mesh reduces local residuals
So we can reduce the output error by refining those elements
that have a high εe

Adaptation choices
Local refinement versus global re-meshing
Which/how many elements should be targeted?
Isotropic versus anisotropic refinement
h, p, or hp mechanics
Should coarsening be allowed?
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Local mesh modification

Modify the mesh incrementally (mesh generation is hard)
Often more robust than global re-meshing
With node movement, can be flexible for unstructured meshes
Hanging nodes easily supported in DG

Edge Swap Edge Split Edge Collapse

Unstructured local mesh operators

element
targeted

hanging
node

Hanging-node refinement
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Global re-meshing

Entire mesh is re-generated
Current mesh still plays a role in defining a Riemannian metric
Useful software in 2D: Bi-dimensional Anisotropic Mesh
Generator (BAMG)
Example of refinement near a single point:

Original mesh After refinement
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Incorporating anisotropy

Crucial for high-Reynolds number simulations, esp. in 3D
Can come in via a metric or discrete hanging-node “slices”

M ∈ R2×2

e1

h1e2

h2

ei = eig. vec. of M

λi = eig. vec. of M

hi
hj

=

(
λj
λi

)1/2

Anisotropic metric in 2D

choice 2

choice 1 choice 3 = both

Hanging-node choices

Assess need for anisotropy by
Looking at derivatives of a scalar quantity (Mach number)
Solving local sub-problems to determine impact of anisotropy
directly on the output error
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Targeting strategies [Nemec et al, 2008]

Constant threshold: refine all elements above a constant error indicator

Decreasing threshold: threshold decreases with each iteration
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Curved boundaries

DG needs an accurate representation
of curved boundaries
Curving elements is not easy
Tangling is hard to avoid, especially in
3D anisotropic elements pressure contours

p = 2 Euler flow over a
linear-element bump

representation

First-layer curving (extend via elasticity)

Agglomeration: linear→ cubic elements

Anisotropic
simplex cut cells
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Inviscid flow over an airfoil

NACA 0012, Euler, M∞ = 0.5, α = 2◦

Final drag-adapted mesh for p = 2
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output−based, p=1

uniform, p=2
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Drag convergence

We obtain Ψh approximately (adaptation unaffected)
Adaptive refinement “quarantines” the trailing edge singularity
and uncovers the superconvergent 2p + 1 rate
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Viscous flow over an airfoil

NACA 0012, Navier-Stokes, M∞ = 0.5, Re = 5000, α = 0◦

Final drag-adapted mesh for p = 2
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Drag convergence

Rate in uniform refinement limited by high-order singularities
Adaptive refinement uncovers a superconvergent rate (2p)
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Transonic RANS flow over an airfoil

NACA 0012, Navier-Stokes + SA, M∞ = 0.8, Re = 100k, α = 1.25◦

Initial mesh (1740 elements) Mach number contours

Adapted isotropic mesh Adapted anisotropic mesh
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Transonic RANS flow over an airfoil (ctd.)

Fine space adjoint solved approximately
Anisotropic adaptation driven by local solves on discrete
refinement choices
Outputs from uniform refinement overshoot exact values
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Transonic RANS flow over a wing

DPW III wing-alone case: M∞ = 0.76,Re = 5× 106

Initial mesh: cubic hex
elements generated by
agglomeration of linear
multiblock meshes (first
element y+ ≈ 1)

Artificial viscosity shock
capturing

Spalart-Allmaras turbulence
model with negative ν̃
modification [Oliver & Allmaras]

Drag-adaptive simulation using
hp discrete choice algorithm
(Ceze + Fidkowski, 2013)

Contours of cp and ν̃
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DPW wing: adapted meshes

Original mesh, with cp contours 7th drag-adapted mesh

Mach/mesh using DOF cost Mach/mesh using non-zero entries cost
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DPW wing: comparison to uniform refinement
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DPW wing: comparison to uniform refinement
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Outline

1 Introduction

2 Discretization

3 Output error estimation

4 Mesh Adaptation

5 Unsteady systems

6 A hybrid DG discretization

7 Concluding remarks
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A simple time discretization

Discretizing space only gives

M
dU
dt

+ R(U) = 0,

where M ∈ RN×N is the mass matrix,

Mij = Is

∫
Ω
φiφj dΩ

Discretizing time via backward Euler, we have

M
Um − Um−1

∆t
+ R(Um)︸ ︷︷ ︸

unsteady residual: Rm

= 0

m = time node index
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Adjoint discretization

Unsteady sensitivity chain

µ→ Rm(Un,µ) = 0 → Un → J(Un)

Adjoint equation
Nt∑

m=1

(
∂Rm

∂Un

)T

Ψm +

(
∂J
∂Un

)T

= 0

Primal unsteady Jacobian

∂Rm

∂Un =



?
? ?

? ?
? ?

? ?
? ?



Adjoint unsteady Jacobian

(
∂Rm

∂Un

)T

=



? ?
? ?

? ?
? ?

? ?
?


Jacobian transpose⇒ backwards time-marching for the adjoint
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Discontinuous Galerkin in time

Finite element in time: time intervals→ “slabs”
Order r temporal representation in each slab
Spatial order can vary in time (dynamic order)
End-of-slab solution provides initial condition for the next slab

−
+
−
+

x

y

t

tk
tk−1

dynamic spatial order

time slab k

element (e, k = 1)
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DG-in-time equations

Multiplying the PDE by temporal test functions ϕm
h and integrating

by parts gives (r + 1) unsteady residual vectors, enumerated by m,

Rkm
h ≡ amnMk,k

h Ukn
h − ϕm

h (tk−1)Mk,k−1
h Uk−1,r+1

h︸ ︷︷ ︸
from dUh/dt

+

∫ tk

tk−1

ϕm
h (t)Rh

(
Uk

h(t)
)

dt

ϕ2
h(t)ϕ1

h(t)
ϕ3

h(t)

t
tktk−1

Uk−1,r+1
h

Uk−1
h (t)

Uk
h(t)Uk,1

h

slab kslab k − 1
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DG-in-time adjoint

Total number of time nodes: Nt = Nk(r + 1)

Ψkm
H = the adjoint at time slab k, time node m

Unsteady adjoint equation(
∂Rkm

h

∂Uln
h

)T

Ψkm
h +

(
∂Jh

∂Uln
h

)T

︸ ︷︷ ︸
Rln
ψh(Ψkm

h )

= 0

k, l = time slab indices m, n = intra-slab time node indices

Primal and adjoint systems can both be solved using a
relatively cheap, inexact Newton method
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Output error estimation

The adjoint-weighted residual extends to unsteady systems,

δJ ≈ −ΨT
h Rh(UH

h ) = −
Nk∑

k=1

r+1∑
m=1

(
Ψkm

h
)T Rkm

h (UH
h )

= −
Nk∑

k=1

Ne∑
e=1

r+1∑
m=1

(
Ψkm

he
)T Rkm

he
(
UH

h
)

︸ ︷︷ ︸
εk

e=contribution of (e,k)

The error indicator for element e of time slab k is

εk
e =

∣∣εk
e

∣∣
Sometimes also interested in a “conservative” error estimate

sum of indicators = ε =

Nk∑
k=1

Ne∑
e=1

εk
e
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?

spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
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Space-time anisotropy measure
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?
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Space-time error indicators

One can use the projection-based anisotropy measure on
each space-time element
These projections give separate εspace

e,k and εtime
e,k estimates,

which then yield spatial and temporal error fractions,

βk,space
e =

|εk,space
e |

|εk,space
e |+ |εk,time

e |
, βk,time

e = 1− βk,space
e

Adaptive indicators use total space-time error, εk
e = |εk

e|

spatial indicator on space-time elem e, k = ε
k,space
e = εk

eβ
k,space
e

total spatial indicator on spatial elem e = ε
space
e =

∑
k

εk
eβ

k,space
e

total temporal indicator on time slab k = εk,time =
∑

e

εk
eβ

k,time
e
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Adaptive solution process

Mesh adaptation
Error estimation

Second adaptive iteration

First adaptive iteration

Adapted solution
and error estimate

Start
saved
states

Forward solve

Adjoint solve

Forward solve

Adjoint solve

t = Tt = 0
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Temporal refinement

Use bisection of time slabs if just refining
If also coarsening, need to shuffle all time slabs
Shuffle using a one-dimensional metric-based algorithm
Example: refine blue slabs, coarsen gold slabs

t

Time slab bisection

t

Time-slab shuffling
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Static spatial refinement

As a simplification, let’s first keep the spatial refinement
constant in time
On each adaptive iteration we h-refine some spatial elements
This is surprisingly efficient for many problems

−
+
−
+

x

y

t

tk
tk−1

static spatial refinement

element (e, k = 1)

time slab k
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Static h-refinement, impulsively-started airfoil

NACA 0012, Navier-Stokes, M∞ = 0.5, Re = 5000, α = 8◦
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Time integral output definition; a
vortex-shedding pattern has been established
by the time of the output measurement
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Impulsively-started airfoil: output convergence

Consider space-time refinement using various error indicators
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Output error, DOF=7.56E+06

Approximation error, DOF=9.08E+06

Residual, DOF=1.51E+07

Uniform adaptation, DOF=3.76E+07

Actual

Output histories

Acoustic waves distract the unweighted residual indicator
Local approximation error refinement performs well
Output-based refinement is the most efficient in DOFs
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Impulsively-started airfoil: adapted spatial meshes

Meshes shown at iterations with similar total dofs
Spatially-marginalized output error estimate εe is shown on
the elements of the output-adapted mesh

Adapted on output error (5956
elements)

Adapted on approximation
error (4585 elements)

Adapted on residual (7929
elements)
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Impulsively-started airfoil: adapted time slabs

0 1 2 3 4 5 6 7 8 9 10

Output error: 141 time slabs

Approximation error: 420 time slabs

Residual: 211 time slabs

Time

0

0.5

1
x 10

−3

|Temporally−marginalized output error| Output indicator yields
a fairly-uniform
temporal refinement
Approximation error
focuses on the initial
time (dynamics of the
IC) and the latter 1/3
of the time, when the
shed vortices develop
Residual creates a
mostly-uniform
temporal mesh as it
tracks acoustic waves

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 75/110



Deformable domains

ALE Idea: solve transformed PDE on a static reference domain

Reference domain: ~X, uX , ~FX

~NdA

∂uX

∂t

∣∣∣
~X
+∇X · ~FX(uX ,∇XuX) = 0

Mapping

⇒

~X, t ⇒ ~x( ~X, t)

G = ∂~x
∂ ~X

g = det(G)

uX = gu

~vG = ∂~x
∂t

~FX = gG−1~F− uXG
−1~vG

~nda = gG−T ~NdA

~NdA = g−1GT~nda

⇒

Physical domain: ~x, u, ~F

~nda

∂u
∂t

∣∣∣
~x
+∇ · ~F(u,∇u) = 0

Key definitions
~X = reference-domain coordinates
~x = physical-domain coordinates
g = determinant of Jacobian matrix
~vG = grid velocity, ∂~x/∂t

u = physical state
uX = reference state
~F = physical flux vector
~FX = reference flux vector
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Analytical motion technique

Simple and quite general approach for deforming domains
Near-field rigid body motion blends into a static farfield mesh
Blending occurs via polynomial functions in the radial
coordinate

static

reference domain

rigid body

blended
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Geometric conservation law (GCL)

The ALE approach does not guarantee conservation:
Cannot always represent a constant physical solution
Time integration errors affect conservation

A GCL by Persson et al (2009) relies on approximating
uX̄ = ḡu and solving an additional equation

∂ḡ
∂t
−∇X · (gG−1~vG) = 0

This equation is local and cheap to solve, but ...
We need to integrate with higher quadrature rules
We now need to compute a GCL adjoint for error estimation
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Pitching and plunging airfoils

Consider two airfoils pitching and plunging in series

Re = 1200, Minf = 0.3, Str = 2/3, Apitch = ±30 ◦, Aplunge = 0.25c

Case params.
60c× 60c
domain
fgrowth = 35%

fcoarsen = 5%

Output: Lift on
the right airfoil
integrated from
t = 7.25 to 7.5
(the final time) Entropy contours at the end of the simulation
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Adapted mesh

Output-based method

Targets vortex shedding
and larger elements near
motion regions

Refines earlier times, as
well as final times over
which output is integrated

Residual-based method
Only adapts initial times

Is again distracted by
acoustic waves

0 1 2 3 4 5 6 7

Output error: 284 time slabs

Residual: 294 time slabs

Time
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Output convergence versus DOF
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Output convergence versus CPU time
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GCL adjoint

To see what’s (in part) driving the adaptation, we look at contours
of the GCL adjoint. Black and white regions indicate large output
sensitivity.

The output is very sensitive to initial vortex shedding from the
first airfoil
Acoustic rings and a convection path between the airfoils
indicate two different modes of error propagation
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Three-dimensional flapping

We apply the adaptive strategy to a 3D flapping simulation

Re = 500, Minf = 0.3, Str = 0.4, Astroke = ±30 ◦, Apitch = ±10 ◦

Case parameters
Farfield at 20+ chords
DG1 time scheme
The order p is kept
between 0 and 5
fgrowth = 30%

fcoarsen = 5% Wing geometry and kinematics

Output: Lift integrated over final 5% of simulation time
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Adapted spatial meshes

Orders (0 to 3) plotted on entropy isosurfaces for two snapshots of
the flow.

t = 2.25T t = 2.8T
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Output convergence versus DOF
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Output convergence versus CPU time
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Hybridizing DG

In hybrid/mixed DG methods, we introduce additional unknowns
on faces (û), with the intent that these will be the only
globally-coupled unknowns.

y

x

u(x, y)

Th

û

DG

= EDG

= HDG

û

+

+
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Motivation: DOF count

The numbers in the below tables indicate approximately how
many degrees of freedom (per equation of a system) we need per
vertex of a typical mesh.

Triangles:
method p = 1 p = 2 p = 3

DG 6 12 20
CG 1 4 9

HDG 6 9 12
EDG 1 4 7

Quadrilaterals:
method p = 1 p = 2 p = 3

DG 4 9 16
CG 1 4 9

HDG 4 6 8
EDG 1 3 5

Tetrahedra:
method p = 1 p = 2 p = 3

DG 24 60 120
CG 1 8.2 27.4

HDG 36 72 120
EDG 1 8.2 27.4

Hexahedra:
method p = 1 p = 2 p = 3

DG 8 27 64
CG 1 8 27

HDG 12 27 48
EDG 1 7 19
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HDG discretization

Introduce ~q to obtain a system of PDEs
~q−∇u = 0

∂tu +∇ ·
[
~F(u) + ~G(u, ~q)

]
︸ ︷︷ ︸

~H(u, ~q)

= 0

Trial functions Test functions Space
u w Vh
~q ~v [Vh]d

û µ Mh

(on elements) Vh =
{

u ∈ L2(Ω) : u|Ωe ∈ Ppe(Ωe) ∀Ωe ∈ Th
}

(on faces) Mh =
{

û ∈ L2(Eh) : û|σf ∈ Ppf (σf ) ∀σf ∈ Eh
}
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HDG discretization (ctd.)

System of PDEs
~q−∇u = 0

∂tu +∇ · ~H(u, ~q) = 0

Weak form
(~q,~v)Th

+ (u,∇ ·~v)Th
− 〈û,~v ·~n〉∂Th

= 0, ∀~v ∈ [Vh]d

(∂tu,w)Th
−
(
~H,∇w

)
Th

+

〈
~̂H ·~n,w

〉
∂Th

= 0, ∀w ∈ Vh〈
~̂H ·~n,µ

〉
∂Th\∂Ω

= 0, ∀µ ∈Mh

(u,w)Th =

Ne∑
e=1

∫
Ωe

uTw dΩ 〈u,~v ·~n〉∂Th
=

Ne∑
e=1

∫
∂Ωe

u+T~v+ ·~n+ ds
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HDG fluxes

∂Ωe ∪ ∂Ω

∂Ωe

~n

Ĥ · ~n
∣∣
interior

~H = ~F + ~G

~q,u

Ĥ · ~n
∣∣
boundary

σf ∈ Eh = set of interior faces

~n = normal pointing outward from Ωe

û = separate unknown on each face

Element Ωe ∈ Th

Ĥ ·~n = ~H(û, ~q) ·~n + S(û)(u− û)︸ ︷︷ ︸
stabilization

Note, fluxes are one-sided: element-interior degrees of
freedom are not directly coupled
Stabilization borrows ideas from DG (e.g. Rusanov, Roe)
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HDG approximation

inside element Ωe: ~q(~x)
∣∣
Ωe

=

d∑
i=1

Npe∑
n=1

Qeinφn(~x)x̂i

inside element Ωe: u(~x)
∣∣
Ωe

=

Npe∑
n=1

Uenφn(~x)

on face f : û(~s)
∣∣
σf

=

Npf∑
n=1

Λfnµn(~s)

~q and u are approximated with the same basis and order, pe

on element e

û is approximated with order pf on face f

The only globally-coupled unknown vector will be Λ
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Residuals

Three types of residuals: two types inside an element, and one
type on interior faces,

RQ
ein =

∫
Ωe

qiφn dΩ +

∫
Ωe

u∂iφn dΩ−
∫
∂Ωe

ûφnni ds

RU
en =

∫
Ωe

∂tuφn dΩ−
∫

Ωe

~H · ∇φn dΩ +

∫
∂Ωe

Ĥ ·~nφn ds

RΛ
fn =

∫
σf

{
Ĥ ·~n

∣∣
L + Ĥ ·~n

∣∣
R

}
µn ds

Note, the integrand appearing in RΛ can be re-written as

Ĥ ·~n
∣∣
L + Ĥ ·~n

∣∣
R =

[
Ĥ(û, ~qL)− Ĥ(û, ~qR)

]
·~nL + SL(uL − û) + SR(uR − û)

⇒ the last set of equations is a weak statement of flux continuity
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HDG residual Jacobian matrix

Q1 U1 Q2 U2 . . . . . . . . . Λf . . .

RQ
1

∂RQ
1

∂Q1

∂RQ
1

∂U1
. . .

∂RQ
1

∂Λf
. . .

RU
1

∂RU
1

∂Q1

∂RU
1

∂U1
. . .

∂RU
1

∂Λf
. . .

RQ
2

∂RQ
2

∂Q2

∂RQ
2

∂U2
. . .

∂RQ
2

∂Λf
. . .

RU
2

∂RU
2

∂Q2

∂RU
2

∂U2
. . .

∂RU
2

∂Λf
. . .

...
. . . . . .

... . . .
...

. . . . . .
... . . .

...
...

...
...

...
...

... ·
... ·

RΛ
f

∂RΛ
f

∂Q1

∂RΛ
f

∂U1

∂RΛ
f

∂Q2

∂RΛ
f

∂U2
. . . . . . . . .

∂RΛ
f

∂Λf
. . .

...
...

...
...

...
...

... ·
... ·
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Static condensation

Jacobian matrix =



∂RQ

∂Q
∂RQ

∂U
∂RQ

∂Λ

∂RU

∂Q
∂RU

∂U
∂RU

∂Λ

∂RΛ

∂Q
∂RΛ

∂U
∂RΛ

∂Λ


=

[
A B

C D

]

Let QU = [Q,U]T

A = ∂RQU

∂QU is easily invertible (element-local solves)

Define a Schur-complement system matrix as

K = D− CA−1B
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Static condensation (ctd.)

At each Newton update, we need to solve the system

[
A B

C D

] [
∆QU
∆Λ

]
+

[
RQU

RΛ

]
=

[
0
0

]

Apply static condensation: i.e. hypothetically solve for QU
from the first block and substitute into the second block,

K ∆Λ + RΛ − CA−1RQU︸ ︷︷ ︸
R̃Λ

= 0

Solve this (hopefully small) system for ∆Λ, and then
back-substitute to get ∆QU

∆QU = −A−1(B∆Λ + RQU)
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Adjoint discretization

The adjoint system for output J is obtained by using the
transpose of the primal Jacobian,[

AT CT

BT DT

] [
ΨQU

ΨΛ

]
+

[
∂J
∂QU

T

∂J
∂Λ

T

]
=

[
0
0

]

Statically condensing out the element-interior degrees of
freedom, we obtain the following system for the face adjoints,

[
DT − BTA−TCT]︸ ︷︷ ︸

KT

ΨΛ +

[
∂J
∂Λ

T
− BTA−T ∂J

∂QU

T]
= 0

Same solution procedure as primal: solve for ΨΛ first, then
for ΨQU
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Error estimation and adaptation

The adjoint-weighted residual output error estimate applies to
an HDG discretization,

δJ ≈ −(ΨQ
h )TRQ

h︸ ︷︷ ︸
δJQ

−(ΨU
h )TRU

h︸ ︷︷ ︸
δJU

−(ΨΛ
h )TRΛ

h︸ ︷︷ ︸
δJΛ

Fine space = order increment on all elements and faces
All residuals are evaluated using the coarse state injected into
the fine space
δJΛ is typically very small (sometimes zero)
We only adapt on localizations of δJQ and δJU
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Inviscid flow over an airfoil

NACA 0012, Euler, M∞ = 0.5, α = 2◦

Mach contours (0–0.6) Final drag-adapted mesh for p = 2

Compare adaptive refinements of DG and HDG
Solve for Ψh approximately using block-Jacobi smoothing
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Inviscid flow over an airfoil: results
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DG

In HDG, δJΛ = 0 exactly in this case
Results nearly identical between HDG and DG
For high orders, HDG has an advantage of smaller global
systems
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RANS-SA flow over an airfoil

RAE 2822, RANS-SA, M∞ = 0.5, Re = 105, α = 1◦

Mach contours (0–0.6) Final drag-adapted mesh

Compare adaptive refinements of DG and HDG
For solver robustness, the initial mesh is already tailored to
resolve the boundary layer
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RANS-SA flow over an airfoil: results
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Scalar advection-diffusion

Scalar advection diffusion in a box, Pe = 50, Dirichlet BCs

Scalar solution Final output-adapted mesh

Output is the heat flux integral on the right boundary
Compare adaptive refinements of DG and HDG
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Scalar advection-diffusion: results
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p = 2

DG and HDG now give different results
Mixed formulation in HDG converges heat flux faster
Output-adaptation buys an extra order of convergence when
considering corrected values
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Concluding remarks: summary

Presented ideas, methods, and results for output-based
adaptive aerodynamics simulations

Used a discontinuous Galerkin (DG) finite element method for
convective stability, hp adaptation

Showed one way to address the cost of DG: hybridization

Extended adjoint-weighted residual to unsteady and
hybridized discretizations

Showed results for 2D and 3D simulations of compressible
flow, including cases with viscosity and Reynolds-averaged
turbulence
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Concluding remarks: key findings

Adjoint error estimates improve robustness of CFD

Output-based adaptation can quarantine singularities and
recover optimal convergence rates

For many steady problems, output-based adaptation saves
DOFs and CPU time compared to uniform refinement or
heuristic indicators

Adaptation mechanics can be tricky, especially with curved
anisotropic elements

Unsteady problems add time as a dimension, and this
generally helps adaptation

Hybrid DG discretizations can reduce globally coupled DOFs
at moderate-to-high orders
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