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Introduction

Complex CFD simulations made possible by
@ Increasing computational power
@ Improvements in numerical algorithms

New liability: ensuring accuracy of computations

@ Management by expert practitioners is not feasible for
increasingly-complex flow fields

@ Reliance on best-practice guidelines is an open-loop solution:
numerical error is unchecked for novel configurations

@ Output calculations are not yet sufficiently robust, even on
relatively standard simulations
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Errors in simulations come from various sources
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Verification is important

AIAA Drag Prediction Workshop 11l (2006)
@ Wing-body geometry, M = 0.75,C, = 0.5,Re = 5 x 10°
@ Drag computed with various state of the art CFD codes
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1 drag count (.0001Cp) =~ 4-8 passengers for a large aircraft
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Numerical errors have come down, at a large cost

Summary of AIAA DPW results (Ceze 2013)
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Uniform grid refinement may be misleading

@ DPW Il wing-alone case: M, = 0.76,Re = 5 x 10°

@ Two mesh sequences generated using best-practice
mesh-generation guidelines [Mavriplis, 2007]

@ Run on same code (turbulence model, solver, etc)
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Verification = control of numerical error

@ Dominant source is discretization error (i.e. lack of
appropriate mesh resolution)
@ Controlling error means answering
@ How much error is present? (error estimation)
@ How can this error be reduced? (mesh adaptation)

@ Possible strategies:

Error estimation? Effective adaptation?
Resource exhaustion No No
Expert assessment Maybe Maybe
Convergence studies Yes No
Comparison to experiments Yes No
Feature—based adaptation No Maybe
Output—based methods Yes Yes
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Improving CFD robustness

Error estimation

@ Error estimates on outputs of interest are necessary for
confidence in CFD results

@ Mathematical theory exists for obtaining such estimates

@ Recent works demonstrate the success of this theory for
aerospace applications

Mesh adaptation
@ Error estimation alone is not enough

@ Engineering accuracy for complex aerospace simulations
demands mesh adaptation to control numerical error

@ Automated adaptation improves robustness by closing the
loop in CFD analysis

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 10/110



Initial mesh

=
2,
+~
]
15
corrected |
output

exact output value

cost (degrees of freedom)
adaptive iterations

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 11/110



Why not just adapt “obvious” regions?

Fishtail shock in M., = 0.95 inviscid flow over a NACA 0012 airfoil

1000 1500
Number of elements

Adapted using drag adjoint
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The role of high order

@ High-order methods: errors converge faster than 2"-order

@ Typically choose high-order methods for “smooth” problems,
where we expect to see convergence plots that look like:

log(error)

= log(dof)

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 13/110



@ Question considered by recent high-order CFD workshops

@ Aerospace applications usually have both smooth and
singular features (shocks, trailing edges)

@ Singularities can limit observed rates

_of| Auniform, p=2

10
-&-uniform, p=1 B 1
| 0-uniform, p=3

Drag coefficient error

1072 10
h = (number of elements)'”2

Mach numbers (0-0.7), Euler flow
over a NACA 0012 airfoil Drag error convergence
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High-order in mesh adaptation

@ Adaptation can isolate singularities with small elements
@ In many high-order methods, local p-enrichment is possible

@ High-order just becomes another refinement tool for efficiently
improving accuracy

log(error)

high-order
elements

adaptive hp

= log(dof)
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Conservation equations

@ PDE:

’ oa+ OH;(u,Vu) =0 ‘

@ i: 1 <i<dindexes the spatial dimension d (implied sum)
@ u € R* is the state vector
@ H; c R! is the i component of the total flux

H,‘ = F,‘(l.l) + Gl‘ (ll, Vll)
—— N—_——
inviscid flux viscous flux

@ The viscous flux is

Gi(u, Vu) = —K;j(u) du
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Solution approximation

Polynomials of order p, on each element:
Ne Npe

()~ > > Usen()

e=1 n=1

N, = # of elements

N,, = # of basis fcns on element e
5 ben(¥) = n'™ basis fcn of order p, on e
e . .
pe = approximation order on element e
U., = vector of s coefficients on n'"
. | basis function on element e
domain element ¢
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Weak form

@ Multiply the PDE by test functions v, € V;, to get

’Rh(uh,vh) =0, VvyeV,
@ Integrating by parts and using BR2, we obtain

Ru(up, vilo,) = /v;{@,uhdﬁ—/ OviH; dQ
Q. Qe

+/ V7 (F+G) ds
00,

interface/boundary flux

+ 8I~V;[TKI~]- (ll;:_ — ﬁh) ds
Qe

adjoint-consistency term
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()™ = quantity from element interior
()~ = quantity from neighbor element
(1)” = quantity defined on a boundary

~

F(uy,u, i)

fb(u;[, BC, 77)
(A}h(uz, Vu,",BC,7)

u 09, U 09

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski

CGiu™ u— + -
G(w, ,u, ,Vu,,Vu, i)

20/110



Discrete system

@ Discrete residual on element e for n'" test function,

Ren = {Rh(“h, (bener)}r:l,,,s € RS

@ We lump all residuals and states into single vectors (size N),

R(U) = 0
: gz w U, state approx.
U= } clement ¢ : . U, coefficients for
. U,, ‘} basis fcn n : element e and
: U, basis function n
Uen,,

numbers needed to describe s order p

polynomials inside element e
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Verification using a manufactured solution

@ How do we know if we coded the discretization correctly?
@ Analytical solutions are scarce, especially for RANS
@ Let’s “make up” a solution,

u(¥) = u™5(x) = chosen by the user

@ Substituting uMS(¥) into the PDE gives a remainder of

SMS = 8;llMS + &'H,‘(UMS, vuMS)

@ Using this remainder as a negative source term gives a PDE
that u™S does satisfy,

ouMS + &-H,-(uMS, VuMS) —sMS =9
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Manufactured solution results for RANS

@ Pick a sinusoidal variation, )M = a,, + b, sin(c,x + d,y), and
similarly for the other state components.

@ Compute and discretize the source term, sMS

@ Does solution on progressively-finer meshes approach u™5?
Check with L, norm:
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h = (number of elemen'(s)'”2
Manufactured solution, p Spalart-Allmaras RANS test
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Local sensitivities

@ Suppose N, parameters affect our PDE, but we only have
one scalar output, J(U):

m —R(U,p)=0— U — J(U)
~—~ ——— ~~ —~—
inputs € RNu N equations state € RY output (scalar)

@ We are interested in how J changes with p,

dJ

€ R>Nu = N, sensitivities
dp

@ Brute force approach: perturb each entry in u individually,
re-solve the PDE, and measure the perturbation in the output

This is inefficient for large N,
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The discrete adjoint
@ We can efficiently compute sensitivities using a discrete

adjoint vector, ¥ € RV,
ﬂ — \I,TaiR
dp ou

@ Each entry in ¥ is the sensitivity of J to residual source
perturbations in the corresponding entry in R

17 R U J
w | | o
o . .| oU
| solver :
\ (expensive) /
_— .
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The discrete adjoint equation

@ Consider a small perturbation ¢R to the residual
@ The resulting (linearized) state perturbation, §U satisfies

IR
—O0U+R=0
au’ "

@ Also linearizing the output we have,

linearized equations
-

oJ OR
= _—U=9TR=-wT_—
0J = 5500 5 550U
D Y —

adjoint definition

@ Requiring the above to hold for arbitrary perturbations yields
the linear discrete adjoint equation

OR\ 7 oI\
(au) ‘“(au) =0
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Consider flow over an airfoil:
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Output sensitivity to residuals: the adjoint

The lift adjoint ¥ is the sensitivity of lift to residual sources.

Lift= J(U)
We have a solution U when R = 0

element e

state U

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 28/110



Output sensitivity to residuals: the adjoint

The lift adjoint ¥ is the sensitivity of lift to residual sources.

Lift= J(U)
We have a solution U when R = 0
element e
O0R,
What if we add a residual source, 6R,? U
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Output sensitivity to residuals: the adjoint

The lift adjoint ¥ is the sensitivity of lift to residual sources.

Lift= J(U) 4 6J
We have a solution U when R = 0

element e

R,
. . 9
What if we add a residual source, 0R,? U sU

\/

resolving for the state ...
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Output sensitivity to residuals: the adjoint

The lift adjoint ¥ is the sensitivity of lift to residual sources.

6J = WIsR,

Lift=J(U) 4 oJ
We have a solution U when R =0

element e

R, v,
. . 9
What if we add a residual source, 0R,? U sU

\/

resolving for the state ...
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Another steady adjoint solution

RAE 2822, M., = 0.5, Re = 10, a = 1°

e

x-momentum primal state cons. of x-mom drag adjoint

@ Adjoint shares similar qualitative features with primal
@ Note wake “reversal” in adjoint solution

@ The discrete adjoint solution approximates the continuous
adjoint when the discretization is adjoint consistent
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Adjoint verification

@ We can verify the discrete adjoint with a sensitivity analysis,
i _;0R 0J
do~ " 9a " oa

@ Compare to finite-difference sensitivity calculation

@ Example: NACA 0012 airfoil in Re = 5000 flow

0.03

0.029r

o
Q
Y]
®

0.027r

lift coefficient

o
Q
]
[}

0.0251

O outputs from nonlinear solver
=—adjoint-based sensitivity

2.1 2.15 22 2.25
angle of attack (deg)

Mach number contours Lift coefficient sensitivity
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Adjoint implementation

@ The discrete adjoint, ¥, is obtained by solving a linear system

@ This system involves linearizations about the primal solution,
U, which is generally obtained first

@ When the full Jacobian matrix, g—‘l}, and an associated linear
solver are available, the transpose linear solve is
straightforward

@ When the Jacobian matrix is not stored, the discrete adjoint
solve is more involved: all operations in the primal solve must
be linearized, transposed, and applied in reverse order

@ In unsteady discretizations, the adjoint must be marched
backward in time from the final to the initial state
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Output error estimation

We want: 6J = Jy(Uy) — J(U)

This is the difference between J computed with the discrete
system solution, Uy, and J computed with the exact solution, U

We’'ll settle for: 6J = J,(Uy) — J,,(Uy,)
This is the difference in J relative to a finer discretization (k)

coarse space: — Ry(Uy) =0 — Uy —  Jg(Up)
S—— ~~ N——
Ny equations  state € RV output (scalar)

fine space: — R, (Up) =0 — U, —  J(Up)
Nj equations  state € RV output (scalar)
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Fine-space injection

@ The fine space can arise from /4 or p refinement
@ Define an injection of the coarse state into the fine space

Coarse space Fine space

injection: I

@ U will generally not satisfy the fine-space equations,

R;(U;) #0
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@ A finer space (e.g. order enrichment) can uncover residuals
in a converged solution

@ Example: NACA 0012 at o = 2° in Re = 5000, M, = 0.5 flow

Coarse space residual, Ry (Ug)

Coarse space state, Uy

L S\ A —X

‘MAVAVLAlbﬁ,
R e N Qe S

TAVEAYa v g g D AVAVAN
WA AavaVs SO o e VYAV
ORISR

pa =1 Zero as expected
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@ A finer space (e.g. order enrichment) can uncover residuals
in a converged solution

@ Example: NACA 0012 at o = 2° in Re = 5000, M, = 0.5 flow

Injected state, U Fine space residual, R,(U#)
h h

e ST

Dh =72 Nonzero: new info
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The adjoint-weighted residual

@ U solves a perturbed fine-space problem
find Uj, such that:  R,(U},) —R,(U¥) =0 = answer: U, = UY
N———
5Rh
@ The fine-space adjoint, ¥, then tells us to expect an output
perturbation of
Ju(UD) — J1,(Uy) = IR, = — TR, (U

~0J

@ This equation assumes small perturbations (e.g. if nonlinear)
@ In summary, we have an adjoint-weighted residual error
estimate,

6J =~ —wIR,(UH)
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Adjoint-weighted residual example

Fine space

=

esidual, R,(UY)

(U3)]

4

AVAVA WARA

Output error: §J ~ —WIR,(UH)

KERKS
"x‘xng K
NSAKIN
ORIV

</
Avgggnﬁ

Idea: adapt where ¢, is high, to
reduce the residual there
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Two more definitions

Corrected output

chforrected = Jy — 6]

@ Should converge faster than Jy
@ Remaining error = error left in corrected output

Error effectivity

_ Ju(Un) = 14(Up)
L Jn(Un) —J

@ J = exact output
@ We want ny close to 1
o Effectivity is affected by choice of fine space
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Error convergence tests

@ Expect

error = Ch*, ash — 0

@ k = rate of convergence

@ h = measure of element size (precise value not important)
@ For 2D uniform-refinement studies, can use h = /1/N,

@ Taking a log of the above equation,

1
log(error) = logC + k log <\ / N>
e

@ We can measure k by plotting log(error) versus log(h)
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Drag error in inviscid flow over a bump

10 1.01
s | e | e
=
[T ) S
= 10 ; 0.99
2 15
§ = 0.9
= ©
8, ]

10 1 = 0.9
g i
e . 0.96 .

=B-error in output -B-relative to exact error
~ =©-error in corrected output -©-relative to fine-space error
10 -1.9 -1.6 -1.3 0.95 -1.9 1.6 -1.3
10 10 : 10 10 :

-1/2 -1/2

1
h = (number of elements) h = (humber of elements)
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Drag error in viscous flow over an airfoil

Drag coefficient error
>

38 =B-error in output
5 -©-error in corrected output

2

10 10°

h = (number of elements)'”2

1.05

0.95

o
©

0.85

Error effectivity
o
(o)

Ideal=1

*-E- relative to exact error

-©-relative to fine-space error|

107

h = (number of elements)
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Error estimation summary

@ Solve the coarse-discretization forward and adjoint problems:
Uy and ¥y

© Pick a fine discretization “4” (mesh refinement or order
enrichment)

© Calculate or approximate ¥, = adjoint on the fine space

© Project Uy onto the fine discretization and calculate the
residual R, (U¥)

© Weight the fine-space residual with the fine-space adjoint to
obtain the output error estimate

© The computed output error §J is an estimate of the true error,
not a bound
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Mesh adaptation

Initial coarse mesh & error tolerance

i
—{Flow and adjoint solution}

\ 4
[ Output error estimate }

Tolerance =( Done ]

met?

{ Error localization j

A4

4[ Mesh adaptation J
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Error localization

@ Recall that the adjoint-weighted residual expression for the
output error involves a sum over elements (e)

Ju(Un) = Ih(Up) = =T R(U) = =) Wi R, (U)
e

@ The absolute-value of each element’s contribution to the error
is the error indicator on that element

€ = |¥LR(U)

RN N ‘n ‘4

4

Right : plot of error indicator for a
viscous DG simulation, py =1, p, =2
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Output-based mesh adaptation

Motivating ideas

@ The error indicator (e.) identifies elements with large
adjoint-weighted residuals

@ Locally refining a mesh reduces local residuals

@ So we can reduce the output error by refining those elements
that have a high e,

Adaptation choices
@ Local refinement versus global re-meshing
@ Which/how many elements should be targeted?
@ Isotropic versus anisotropic refinement
@ A, p, or hp mechanics
@ Should coarsening be allowed?
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Local mesh modification

@ Modify the mesh incrementally (mesh generation is hard)

@ Often more robust than global re-meshing

@ With node movement, can be flexible for unstructured meshes

@ Hanging nodes easily supported in DG

<

targeted
2 element

!

<t

Edge Swap Edge Split Edge Collapse
Unstructured local mesh operators

o
&

1 hanging
r--+-P— node

Hanging-node refinement
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Global re-meshing

@ Entire mesh is re-generated
@ Current mesh still plays a role in defining a Riemannian metric

@ Useful software in 2D: Bi-dimensional Anisotropic Mesh
Generator (BAMG)

@ Example of refinement near a single point:

PR ravarAVAVAVAVA
L e
VAVl NAY

I
v

KA N

esh After refinement

Original

3
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Incorporating anisotropy

@ Crucial for high-Reynolds number simulations, esp. in 3D
@ Can come in via a metric or discrete hanging-node “slices”

€1

M € R+ choice 2
S

e e; = eig. vec. of M
A; = eig. vec. of M

E_ >\j 1/2
h]‘_ )\L

choice 3 = both

Anisotropic metric in 2D Hanging-node choices

@ Assess need for anisotropy by

e Looking at derivatives of a scalar quantity (Mach number)

e Solving local sub-problems to determine impact of anisotropy
directly on the output error
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Targeting strategies [nemec o1 2/, 2008

1]

Number of Cells

ia

Refinement
Threshold

Number of Cells

Refinement
Threshold

0
Cellwise Error

Cellwise Error

Constant threshold: refine all elements above a constant error indicator

o

Number of Cells

Initial
Refinement
Threshold

Number of Cells

2]

Decrease
Refinement
Threshold

Cellwise Error

Decreasing threshold:

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics

HE]

Cellwise Error

threshold decreases with each iteration
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Curved boundaries

@ DG needs an accurate representation
of curved boundaries

@ Curving elements is not easy

@ Tangling is hard to avoid, especially in
3D anisotropic elements

\ = “ \WIN
Wl
Agglomerati

I
; LY I A
ear — cubic elements
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pressure contours
p =2 Euler flow over a
linear-element bump
representation

Anisotropic
simplex cut cells
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Inviscid flow over an airfoil

NACA 0012, Euler, M, = 0.5, o = 2°

=B uniform, p=1
2 output-based, p=1
_ uniform, p=2

output-based, p=2

(degrees of freedom)_”2

Final drag-adapted mesh for p = 2 Drag convergence

@ We obtain ¥, approximately (adaptation unaffected)

@ Adaptive refinement “quarantines” the trailing edge singularity
and uncovers the superconvergent 2p + 1 rate
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Viscous flow over an airfoil

NACA 0012, Navier-Stokes, M., = 0.5, Re = 5000, oo = 0°

10
=B-uniform, p=1
=©-output-based, p=1
5 1072} A uniform, p=2
5 - output-based, p=2
_S 107%
S
g 10"
(o))
g
o107
10°
107 02
(degrees of freedom)‘”2
Final drag-adapted mesh for p = 2 Drag convergence

@ Rate in uniform refinement limited by high-order singularities
@ Adaptive refinement uncovers a superconvergent rate (2p)
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Transonic RANS flow over an airfoil

NACA 0012, Navier-Stokes + SA, M, = 0.8, Re = 100k, oo = 1.25°

—~

Adapted isotropic mesh Adapted anisotropic mesh
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Transonic RANS flow over an airfoil (ctd.)

@ Fine space adjoint solved approximately

@ Anisotropic adaptation driven by local solves on discrete

refinement choices

@ Outputs from uniform refinement overshoot exact values

0.0587

Drag coefficient

0.0583(

00582
10°

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics

0.0586 -

0.0585

0.0584 1

—=—Drag adjoint (isotropic)
—o—Lift adjoint (isotropic)
—4—Drag adjoint (anisotropic)
—<— Lift adjoint (anisotropic)
—— Uniform refinement

5

1
Degrees of freedom

Drag output

Lift coefficient

0.38

0.378

0.376

0.374

0.372

—&— Drag adjoint (isotropic)
—o— Lift adjoint (isotropic)
—4—Drag adjoint (anisotropic)
—v— Lift adjoint (anisotropic)
—<— Uniform refinement

s

1
Degrees of freedom

Lift output
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Transonic RANS flow over a wing

DPW Il wing-alone case: My, = 0.76, Re = 5 x 10°

@ Initial mesh: cubic hex
elements generated by
agglomeration of linear
multiblock meshes (first
element y* ~ 1)

@ Atrtificial viscosity shock
capturing

@ Spalart-Allmaras turbulence
model with negative ©
modification [Oliver & Allmaras]

@ Drag-adaptive simulation using
hp discrete choice algorithm Contours of ¢. and 7
(Ceze + Fidkowski, 2013) !
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DPW wing: adapted meshes
- _

LT
7 drag-adapted mesh
T \

|
| &

Mach/mesh using DOF cost Mach/mesh using non-zero entries cost
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DPW wing: comparison to uniform refinement

0.027

0.026 -

0.025[

0.024

CD

0.023 -

0.022-

0.021

output—adapted

®e ® ©-0+ :

uniform

refinement

I

0.02
10°

6

10
DOF

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics

K.J. Fidkowski

10

59/110



DPW wing: comparison to uniform refinement

0.027
0.0216

0.026 0.0214f -y 1
0.0212}f -~ ‘E

0.025 : 8
0.021

0.024 ol : :
00208 L@ o = i e mp)

) - o
O 0.0206
0.023 o i
uniform
0.022+ 0\ : il
. refinement
~
<
0.0211 : G"'G'~e--+4+-o-+—— 1
ooaLOUtput—adapted
T10° 107 _ 10°
CPU work units
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@ Introduction

Q Discretization

Q Output error estimation
Q Mesh Adaptation

e Unsteady systems

© A hybrid DG discretization

Q Concluding remarks
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A simple time discretization

@ Discretizing space only gives

du
M— +R(U) =0
" +RU) =0,

where M € RV*V js the mass matrix,
Mij = Iv/ ¢i¢j ds?
Q

@ Discretizing time via backward Euler, we have

u" — Um—l
M——
At

unsteady residual: R"

+R(U") =0

m = time node index
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Adjoint discretization

@ Unsteady sensitivity chain
p— |R™(U", p) = 0| = U" — J(U")

@ Adjoint equation

OR"
au”

*
*x K
*

>

m=1

*
*

*
*

OR™
our

*
* %

o

Primal unsteady Jacobian

(

OR"
BIE

aJ
aUn

-

-

Adjoint unsteady Jacobian

[ % %

* %
*x ok
*

*
*

Jacobian transpose = backwards time-marching for the adjoint
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Discontinuous Galerkin in time

@ Finite element in time: time intervals — “slabs”

@ Order r temporal representation in each slab

@ Spatial order can vary in time (dynamic order)

@ End-of-slab solution provides initial condition for the next slab

t

22 : E

< time slab &

Ik -_?| T T T T ] dynamic spatial order
Te—1=" —
7
e =

/ = element (e, k = 1)
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DG-in-time equations

Multiplying the PDE by temporal test functions ¢} and integrating
by parts gives (r + 1) unsteady residual vectors, enumerated by m,

ka: mankakn* m M’Qk*lUk*l,r‘i’l fk m R Uk d

n = a""MUE = o ()M, h + @i (ORy, (Uy(1)) dr
tp—

from dUy, /dt o

iattas Ub! Uk (1)

slabk — 1 ti—1 slab k tx
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DG-in-time adjoint

@ Total number of time nodes: N; = Ni(r + 1)
@ U¥ — the adjoint at time slab &, time node m
@ Unsteady adjoint equation

oRkmNT on\"
] lI'h + I -

RY, (L")

k,l = time slab indices m, n = intra-slab time node indices

@ Primal and adjoint systems can both be solved using a
relatively cheap, inexact Newton method
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Output error estimation

@ The adjoint-weighted residual extends to unsteady systems,

Ni r+1
51~ —TIR(UE) =~ () R(Up)
k=1 m=1
N, r+1

= —ZZZ wi)' Ri (Uf)

k=1 e=1 m=1

ek=contribution of (e,k)

@ The error indicator for element e of time slab k is
k k
e = |ek]
@ Sometimes also interested in a “conservative” error estimate
Ny N,
sum of indicators = ¢ =) > "¢t
k=1 e=1
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?

v,

A

= .. .
g fine-space adjoint solution:
= Pex + 1 in space, r + 1 in time
5
—
=
=
o .
g current (coarse) forward solution:
] ° Pex 10 space, r in time
Uy

spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?

e = —WIR,(UY)

S

-~

space-time error

temporal resolution

Uy

spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?

time . .

v, projection of ¥, to v,
= &= ; —9®
k) coarse spatial resolution
=
—

)

7]

o

=

=

=

3

e

=

3
[ ]
Uy

spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal
discretization?

time . .

v, projection of ¥, to ° v,
.5 coarse spatial resolution
=
—
o)
7]
8
= time __ g time,Typptime (y7H
s e =-v, R, (Uhl
o) —
g time error
Q
L

spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal

discretization?

v,
o ®
S
g=
=
- . .
2 projection of ¥, to
e .
= coarse temporal resolution
g
o
5
ey space
o '
Uy
spatial resolution
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Space-time anisotropy measure

How much of the error is due to the spatial versus the temporal

discretization?

projection of ¥, to
coarse temporal resolution

temporal resolution

Uy

space
. ew

space __ _ ygyspace,Tppspace (pTHY __ .
ePree = P PRI (U) = spatial error

spatial resolution
High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics
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Space-time error indicators

@ One can use the projection-based anisotropy measure on
each space-time element

@ These projections give separate ¢ and ¢'i"® estimates,
which then yield spatial and temporal error fractions,

k,space‘
kispace ¢ kitime _ 1 _ pok,space
¢ | k,space k,time * Be =1-5,

‘Ee | + ‘Ee ‘

@ Adaptive indicators use total space-time error, ¢k = |&£|

C 4 e g g k,space  __k pk,space
spatial indicator on space-time elem e,k = ¢, =€, 0P
total spatial indicator on spatial eleme = ¢ = g ek gspace
k
total temporal indicator on time slab k =  Atime — g ek glitime

e
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Adaptive solution process

t=0 t=T
p
Forward solve
Start ] O @
__ saved
States
¢ .
Adjoint solve ;
— L First adaptive iteration
Error estimation
Mesh adaptation
P
Forward solve
>@ { { { @
Adapted solution
P _ ©) o o o 0
and error estimate Adjoint solve
L Second adaptive zteratlon
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Temporal refinement

@ Use bisection of time slabs if just refining

@ If also coarsening, need to shuffle all time slabs

@ Shuffle using a one-dimensional metric-based algorithm
@ Example: refine blue slabs, coarsen gold slabs

N 1 Y N [ B N O

Time slab bisection Time-slab shuffling
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Static spatial refinement

@ As a simplification, let’s first keep the spatial refinement
constant in time

@ On each adaptive iteration we h-refine some spatial elements

@ This is surprisingly efficient for many problems

t
§a
=z
% time slab k
tk "j—:" CT T 17T 1T 711 static spatial refinement
Le—1T=" ;
s
Y e
/ = element (e,k = 1)
_—
X
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Static /#-refinement, impulsively-started airfoil

NACA 0012, Navier-Stokes, M., = 0.5, Re = 5000, oo = 8°
0.8
o |

0.6F

0.5 output

0.4F

031

0.21
0.1J
0
3.72 - 70'10 é z‘t é é 10
Time
Time integral output definition; a
vortex-shedding pattern has been established

by the time of the output measurement

Instantaneous lift coefficient

"
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Impulsively-started airfoil: output convergence

Consider space-time refinement using various error indicators

y 0.45 T

sl o~ Quiput error © Output error, DOF=7.56E+06 |

- pproximation error 0.4} 3 v Approximation error, DOF=9.08E+0§]
sl Eei'd”a' | Residual, DOF=151E+07

g niform adaptation 035} 3 Uniform adaptation, DOF=3.76E+07
o6k \ —— Actual

X W

N

Output
o o o
o ® o
N
—_

Instantaneous lift coefficient

|- @ Oy~ — —
Actual

02 //
0.1r

of
-0.1
-02 ‘5 ‘5 5 ‘a

10 10 0 10 .
degrees of freedom Time
Output convergence Output histories

@ Acoustic waves distract the unweighted residual indicator
@ Local approximation error refinement performs well
@ Output-based refinement is the most efficient in DOFs
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Impulsively-started airfoil: adapted spatial meshes

@ Meshes shown at iterations with similar total dofs
@ Spatially-marginalized output error estimate ¢, is shown on
the elements of the output-adapted mesh

o

/T\ = T 1 !
EE - — E c

] == - a

e \F%i;?jriil NT\UL‘:\ '7‘\ ' ' S
Adapted on output error (5956 Adapted on approximation Adapted on residual (7929
elements) error (4585 elements) elements)
K.J. Fidkowski 741110
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Impulsively-started airfoil: adapted time slabs

x10”
1r . . .
|Temporally-marginalized output error| (] Output indicator ylelds
s [—"] a fairly-uniform
i ‘ ‘ ‘ ‘ ‘ ‘ ‘ temporal refinement

@ Approximation error
focuses on the initial

time (dynamics of the

IC) and the latter 1/3

shed vortices develop

Output error: 141 time slabs
T T T T T T T T

CURITARRER

Approximation error: 420 time slabs
e T

@ Residual creates a
mostly-uniform
R d I: 211t lab: i
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII temporal meSh as It
o 2 s 4 . s s 7 s 10 tracks acoustic waves
ime
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Deformable domains

ALE Idea: solve transformed PDE on a static reference domain

Reference domain: X, ux, Fx Mapping Physical domain: ¥,u, F
Xt = #(X,1) | ) \
_ o1 <O —
@ = X / “ -\
g = det(GQ) /SRR S| /‘ i
uy = gu y ) N
o = % - V) \
G = o 1 SN
— Fx = gG'F-uxGldg f \ IS
#)T ¢ T Vx - Fxluy, Vyuy) = 0‘ fida = gG TNdA Q) V- F(u,Vu)=0
) ///7\7“7‘7"¥ NdA = g G ida /’\ 1

Key definitions

X = reference-domain coordinates u = physical state
X = physical-domain coordinates ux = reference state
g = determinant of Jacobian matrix F = physical flux vector
Ve = grid velocity, 9x/0t Fy = reference flux vector
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Analytical motion technique

@ Simple and quite general approach for deforming domains
@ Near-field rigid body motion blends into a static farfield mesh

@ Blending occurs via polynomial functions in the radial
coordinate

static

blended

rigid body
-

reference domain
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Geometric conservation law (GCL)

@ The ALE approach does not guarantee conservation:
e Cannot always represent a constant physical solution
e Time integration errors affect conservation
@ A GCL by Persson et al (2009) relies on approximating
uy = gu and solving an additional equation
0g ~1
R v Ve) =0
% x - (867 'Vg)
@ This equation is local and cheap to solve, but ...

e We need to integrate with higher quadrature rules
e We now need to compute a GCL adjoint for error estimation

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 78/110



Pitching and plunging airfoils
Consider two airfoils pitching and plunging in series

Re = 1200, My =0.3, Str=2/3, Apien = £30°, Apunge = 0.25¢

Case params.

@ 60c x 60c
domain

° fgmwth =35%

® feoarsen = 5%

Output: Lift on
the right airfoil
integrated from

t=725t075
(the final time) Entropy contours at the end of the simulation
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Adapted mesh

Output-based method

@ Targets vortex shedding
and larger elements near
motion regions

»e;

N

5
s
]

Ve

@ Refines earlier times, as
well as final times over
which output is integrated

4'1

Residual-based method

@ Only adapts initial times

H\IH\IHIIH\I\HHHHH\IIIIIII\\IHH\HHH\HHHHH\HIIHHH\H\IIH\HI\HHHHIIIH\HHHIIIHH

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics K.J. Fidkowski 80/110

@ Is again distracted by
acoustic waves

ReS|duaI 294 time slabs
I

Time



Output convergence versus DOF

-0.06
—0.065; —@— Output-based i
L w —4— Output-based, corrected
L —— Residual i
-0.07 .
L —#— Uniform-p
_0.075- —&— Uniform-h
-0.08+
“g_ L
£ _0.085-
o L
5 -0.09F
—-0.0951
-0.11
-0.1051 Actual
011} i
t L L L T | L L L T | L L L T |
10° 10’ 10° 10°

Total space-time DOF
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Output convergence versus CPU time

-0.065 ]

-0.07F —— Output-based, corrected |
i —— Residual

—#&— Uniform-p
-0.075F R
00 57 —&A— Uniform-h

-0.081
-0.085

-0.09-

Lift output

-0.095

-0.11
Actual

-0.1051 B

=011 B

~0.115 e T Ry —
102 10° 10" ° °
CPU Time (s)
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To see what’s (in part) driving the adaptation, we look at contours
of the GCL adjoint. Black and white regions indicate large output
sensitivity.

@ The output is very sensitive to initial vortex shedding from the
first airfoll

@ Acoustic rings and a convection path between the airfoils
indicate two different modes of error propagation
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Three-dimensional flapping

We apply the adaptive strategy to a 3D flapping simulation
Re =500, M, =0.3, Str=04, Agoke = £30°, Apjen = £10°

Case parameters
@ Farfield at 20+ chords
@ DG1 time scheme

@ The order p is kept
between 0 and 5

° fgrowth =30%

+10° AoA

® feoarsen = 5% Wing geometry and kinematics

Output: Lift integrated over final 5% of simulation time
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Adapted spatial meshes

Orders (0 to 3) plotted on entropy isosurfaces for two snapshots of
the flow.
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Output convergence versus DOF

—@— Output-based

—&— Output-based, corrected
—»— Residual
—#— Uniform-p

Lift output
o o
[ee) © -
T T T

I
1]
T

06 Actual <§ i

L L L
6 7 8

Total space-time DOF
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Output convergence versus CPU time

1.3 Bl
1.2 Bl
—— Output-based
1.1F —4&— Output-based, corrected B
—>»— Residual
o 1F —&— Uniform-p N
>
j=3
>
So9f 1
:‘_I:
0.8 il
0.7 B
0.6 |
0.5} | | | J
10" 10° ' 10° 10°

10
Wall Time (hrs)
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Q Introduction

Q Discretization

O Output error estimation
o Mesh Adaptation

O Unsteady systems

@ A hybrid DG discretization

o Concluding remarks
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Hybridizing DG

In hybrid/mixed DG methods, we introduce additional unknowns
on faces (u), with the intent that these will be the only
globally-coupled unknowns.

= HDG
+
DG /
w u(z,y)
“\/é ‘ t EDG

/
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Motivation: DOF count

The numbers in the below tables indicate approximately how
many degrees of freedom (per equation of a system) we need per

vertex of a typical mesh.

Triangles: Quadrilaterals:
method | p=1 p=2 p=3 method | p=1 p=2 p=3
DG 6 12 20 DG 4 9 16
CG 1 4 9 CG 1 4 9
HDG 6 9 12 HDG 4 6 8
EDG 1 4 7 EDG 1 3 5

Tetrahedra: Hexahedra:

method | p=1 p=2 p=3 method | p=1 p=2 p=3
DG 24 60 120 DG 8 27 64
CG 1 82 274 CG 1 8 27
HDG 36 72 120 HDG 12 27 48
EDG 1 82 274 EDG 1 7 19

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics
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HDG discretization

Introduce q to obtain a system of PDEs
Gg—Vu = 0
ou+V - [ﬁ(u) +G(u, q)] ~ 0

~~

H(u, q)
Trial functions \ Test functions \ Space
u w Vh
q 2 [Vh]d
u © M,
(onelements) V, = {u S L2 (Q) :ulg, € PP(Q,) VQ, € Th}
(onfaces) M, = {u€L*&):uly, €P”(or) Yoy € &}
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HDG discretization (ctd.)

System of PDEs
qg—Vu = 0
du+V-Hugq = 0

Weak form
@97, + (.Y )y, — @V Ry, = 0. We D
(8,u,w)Th (ﬁ, Vw) + <ﬁ-ﬁ',w> = 0, Ywey,
T aTy,
ﬁﬁ,u> = 0, YueM,
AT\ 00
N, Ne
(u,w)7, = Z/Q u’wdQ (W, V- i) oy, = Z/{m ut'vt it ds
e=1 ¢ e=1 e
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HDG fluxes

7i = normal pointing outward ffom Q.

= separate unknown on/each face

7 .
interior

oy € &, = st of interior faces

09, U o

H-ii=H®@,q) 7+ S@H)(u—a)
N—_————
stabilization

@ Note, fluxes are one-sided: element-interior degrees of
freedom are not directly coupled

@ Stabilization borrows ideas from DG (e.g. Rusanov, Roe)
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HDG approximation

inside element €2,: q(¥)

Q. - Z Z Qei11¢n (f)jfl

Q, — ZUengbn(f)

inside element €2,: u(x)

on face f: ﬁ(E’)L’[ = ZAfnun(E)

@ ¢ and u are approximated with the same basis and order, p,
on element e

@ u is approximated with order p; on face f
@ The only globally-coupled unknown vector will be A
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Residuals

Three types of residuals: two types inside an element, and one
type on interior faces,

Rgn = / qt¢ndQ+/ uai¢ndﬂ_/ ﬁ(bnnids
Q. Qe Qe

R), = /@ucbndﬁ—/ H - V¢,dQ + H - ii¢, ds
Q. Qe 90,

R} = /{ﬁ-ﬁ‘L—Fﬁ-ﬁ‘R}unds
9

Note, the integrand appearing in R* can be re-written as

~

Heif|, +H-i, = [H(ﬁ, q.) — H(@, qR)} i+ Se(u — @) + Sp(ug — @)
= the last set of equations is a weak statement of flux continuity
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HDG residual Jacobian matrix

Q U Q U ... ..|.. A

RC oR?  OR? ORY
1 0Q ouU; T 8A6
_U | R oY o
1 0Q; oU; e 6A/
R2 OR?  ORY ORY
2 0Q» U, T 8A6
RU Rl R orl
2 0Qy  0U, Tt OAf

/ 90, au, 90, a0, RN Y. v
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Static condensation

Jacobian matrix =

° LetQU— [Q,U)”

[ ORZ ORZ | OR? |
0Q 0U | O0A
ORY ORV | ORY
0Q 0U | A
ORM  ORM | ORA

L 0Q 0U | OA |

A B
CD

o A= agJ is easily invertible (element-local solves)

@ Define a Schur-complement system matrix as

High-Order Output-Based Adaptive Methods for Steady and Unsteady Aerodynamics
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Static condensation (ctd.)

@ At each Newton update, we need to solve the system

SR ] =

@ Apply static condensation: i.e. hypothetically solve for QU
from the first block and substitute into the second block,

KAA +R» —CA'RY =
~——

RA

A B
CD

@ Solve this (hopefully small) system for AA, and then
back-substitute to get AQU

AQU = —A"!(BAA + RY)
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Adjoint discretization

@ The adjoint system for output J is obtained by using the
transpose of the primal Jacobian,
a5 T
a0 | _ [0
ot 0

AT T [p
IR
oA

@ Statically condensing out the element-interior degrees of
freedom, we obtain the following system for the face adjoints,

a7 or’
T _RpTA-TT) gh _RTA-T -
D' —-B'A7'C"| ® +[a BAT S } 0

KT

@ Same solution procedure as primal: solve for ¥ first, then
for ¥
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Error estimation and adaptation

@ The adjoint-weighted residual output error estimate applies to
an HDG discretization,

) ~ —(T2)TR —(BY)TRY — (TR}

572 6JY SJA

@ Fine space = order increment on all elements and faces

@ All residuals are evaluated using the coarse state injected into
the fine space

@ 6/ is typically very small (sometimes zero)
@ We only adapt on localizations of §/¢ and 6JY
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Inviscid flow over an airfoil

NACA 0012, Euler, Moo = 0.5, a = 2°

Mach contours (0-0.6) Final drag-adapted mesh for p = 2
@ Compare adaptive refinements of DG and HDG
@ Solve for ¥, approximately using block-Jacobi smoothing
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Inviscid flow over an airfoil: results

=B uniform, p=1 =B uniform, p=1
output-based, p=1 output-based, p=1
f -2 ZU”"W’": p=2 . _2| Zunifcrm, p=2
o 10 output-based, p=2, o 10 output-based, p=2
a-) uniform, p=3 = 5 uniform, p=3
— 3 output-based, p=3 — s output-based, p=3
(3] — <22 o . .
T : -
S 10 8 10 5
o (=2
© ©
=5 = 5
Q107 a0 5
-6 6|
10 - 10 -
10 o ! 0" 107 P o
h = (number of elements)” h = (number of elements)’1

@ In HDG, 6/ = 0 exactly in this case
@ Results nearly identical between HDG and DG

@ For high orders, HDG has an advantage of smaller global
systems
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RANS-SA flow over an airfoil

RAE 2822, RANS-SA, M., = 0.5, Re = 10°, a = 1°

Mach contours (0-0.6) Final drag-adapted mesh

@ Compare adaptive refinements of DG and HDG

@ For solver robustness, the initial mesh is already tailored to
resolve the boundary layer
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RANS-SA flow over an airfoil: results

0.0174 ,
=B uniform DG
g =H-uniform HDG

0.0173¢ '-‘\ — output-based DG
= : = = =output-based HDG
@ 0.0172¢ % ' |
O
8 0.0171¢
(&)
(@)
S 0.017"
()

0.0169+

0.0168 : ‘

103 104

number of elements
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Scalar advection-diffusion

Scalar advection diffusion in a box, Pe = 50, Dirichlet BCs

Scalar solution Final output-adapted mesh
@ Output is the heat flux integral on the right boundary
@ Compare adaptive refinements of DG and HDG
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Scalar advection-diffusion: results

=B~ uniform DG =B~ uniform DG
_»|| =©=output-based DG _4 || =©=output-based DG
10 "1} - = corrected DG 10 = = =corrected DG po
=B~ uniform HDG =B~ uniform HDG )
e =©- output-based HDG e =©- output-based HDG 4 .
9 = = =corrected HDG e = = =corrected HDG Pl
= = 5 ¥
D a4 O 46| 1}
v/ 10 «< 10 i
= =2 [
= = W
T T !
T 10 T 10
=10 =10 :- Fl
s
L
10 - : 107 : =
107 " 107" 10 o 107"
h = (number of elements)™ / h = (number of elements)™ /
p=1 p=2

@ DG and HDG now give different results

@ Mixed formulation in HDG converges heat flux faster

@ Output-adaptation buys an extra order of convergence when
considering corrected values
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@ Introduction

Q Discretization

Q Output error estimation
Q Mesh Adaptation

Q Unsteady systems

© A hybrid DG discretization

ﬂ Concluding remarks
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Concluding remarks: summary

@ Presented ideas, methods, and results for output-based
adaptive aerodynamics simulations

@ Used a discontinuous Galerkin (DG) finite element method for
convective stability, #p adaptation

@ Showed one way to address the cost of DG: hybridization

@ Extended adjoint-weighted residual to unsteady and
hybridized discretizations

@ Showed results for 2D and 3D simulations of compressible
flow, including cases with viscosity and Reynolds-averaged
turbulence
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Concluding remarks: key findings

@ Adjoint error estimates improve robustness of CFD

@ Output-based adaptation can quarantine singularities and
recover optimal convergence rates

@ For many steady problems, output-based adaptation saves
DOFs and CPU time compared to uniform refinement or
heuristic indicators

@ Adaptation mechanics can be tricky, especially with curved
anisotropic elements

@ Unsteady problems add time as a dimension, and this
generally helps adaptation

@ Hybrid DG discretizations can reduce globally coupled DOFs
at moderate-to-high orders
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